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This article discusses the state of the art in periocular biometrics, 

presenting an overall framework encompassing the field’s most 

significant research aspects, which include ocular definition, acquisition, 

and detection; identity recognition; and ocular soft-biometric analysis.

The ocular region consists of several organs, 
including the cornea, pupil, iris, sclera, lens, ret-
ina, and eyelid, among others (Figure 1). Among 
these, the iris, sclera, retina, and periocular 

entities have been studied as biometric modalities, par-
ticularly the iris.1 However, iris recognition systems pri-
marily operate with near-infrared (NIR) illumination and 
controlled close-up acquisition. In visible illumination, 

their performance significantly degrades. Moreover, real- 
world conditions present challenges, such as occlusion, 
subjects’ poses, unfavorable illumination, and low res-
olution, which may even hinder iris localization or the 
acquisition of suitable iris images. Face recognition 
technologies have also seen significant progress over 
the past two decades, but unconstrained recognition 
remains difficult. Partial faces became an issue, even in 
controlled setups, during the pandemic, due to the man-
datory use of masks in some places, negatively impact-
ing state-of-the-art facial recognition systems.2
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In this context, periocular biomet-
rics has rapidly evolved as a promising 
approach for unconstrained biomet-
rics. Several recent survey papers,1,3,4 
including those specifically addressing 
mask-related challenges,5 have con-
tributed to this field. Several compe-
titions have also been organized over 
the years.6 The ocular region by itself 
has demonstrated effectiveness in 
identity recognition,3 soft-biometrics 
estimation,7 and expression analysis.5 
It appears both in iris and face images, 
so it is easily obtainable with existing 
sensors. It also remains visible at var-
ious distances, even when face occlu-
sion occurs due to close acquisition (for 
example, selfies8) or when the standoff 
distance prevents high-resolution iris 
imaging. Moreover, in many uncooper-
ative scenarios, it may be the only vis-
ible area, involuntarily or voluntarily 
(for example, criminals concealing their 
faces). Even in cooperative situations, 
the use of facial masks during the pan-
demic obstructed most of the face, 
revealing only the eyes and their imme-
diate surrounding, affecting all kinds 
of applications employing face tech-
nologies in security, health care, border 
control, education, and other domains.

Our scope is, thus, the ocular region. 
This article aims to provide insights 
into key aspects of periocular biomet-
rics, covering the entire pipeline, from 
the definition of the ocular region to 
its acquisition, detection, and identity 
recognition. We also discuss aspects 
such as combining with other modal-
ities to enhance recognition accuracy 
(typically, face or iris), recognition in 
different spectra,9 or estimating demo-
graphic attributes (gender, age, and 
ethnicity) from ocular images. The 
article concludes by highlighting cur-
rent challenges and future directions. 
Existing recent surveys1,4,5,6 primarily 

describe specific feature methods, 
algorithms, datasets, and benchmarks. 
This article takes a more practical 
approach, focusing on technical aspects 
but omitting detailed algorithmic spe-
cifics (found in referenced surveys). We 
mention only the achieved accuracy 
for a specific task whenever relevant, 
referring interested readers to papers 
dedicated to systematic reviews of 
datasets and benchmarks.6 In addition, 
due to the magazine’s limitation on the 
number of references, original works 
cannot always be cited directly. In such 
cases, we refer readers to survey papers 
for comprehensive details about the 
mentioned issues. This mostly applies 
to older papers.

THE PERIOCULAR REGION: 
DEFINITION, ACQUISITION, 
AND DETECTION
The medical definition of “periocular,” 
according to the Merriam-Webster 
dictionary, is “surrounding the eye-
ball but within the orbit.” In biomet-
rics, the term is used loosely to refer 
to the externally visible region of the 
face around the eye socket, and some-
times it is used interchangeably with 

the term “ocular.” Thus, periocular 
systems employ the entire eye image 
as input, as depicted in Figure 1. While 
components such as the iris and sclera 
are present, they are not necessarily 
used in isolation or may not have suf-
ficient quality to be processed reliably 
on their own. It is important to note 
that there is no standardized defini-
tion for the periocular region of inter-
est (ROI), resulting in variations across 
papers. Additionally, some authors use 
the eye center as the reference, while 
others use the eye corners, which are 
less sensitive to gaze variations.4

Initial research employed face or 
iris datasets, due to limited availabil-
ity of periocular ones. Sensing devices 
included digital cameras, webcams, 
video cameras, or close-up iris sensors. 
As research progressed, specific data-
sets emerged. A detailed description of 
face, iris, and periocular databases can 
be found in existing surveys1,3,5,6 and 
newer papers.10 Figure 2 shows sample 
images from periocular databases and 
the best-reported accuracy on those 
datasets. They are categorized into NIR 
and visible databases. Most visible data-
bases (CSIP, MICHE, VSSIRIS, VISOB, 
and UFPR) have been captured using 
mobile devices by volunteers themselves, 
introducing variabilities, such as blur, 
defocus, reflections, eyeglasses, off-angle 
gazes, poses, makeup, or expressions. 
These databases also include different 
sensors and environments (indoor/
outdoor, natural light/office light, and 
so on) Some are with long-range devices 
(FOCS and CASIA distance) or zoom-
able digital cameras (UBIPr), and there 
are a few multiple-spectra sets, enabling 
cross-spectral periocular analysis.9 Also, 
although several sets involve different 
acquisition distances (for example, MIR 
2016, CASIA Iris Mobile, and UBIPr), 
subjects usually stand at predetermined 

FIGURE 1. An eye image labeled with 
some parts of the ocular region.
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standoff distances. The only database 
with true mobility is FOCS, with sub-
jects walking through an acquisition 
portal. This introduces significant chal-
lenges, such as motion blur or scale 
changes, resulting in lower accuracy 
(equal error rate: 18.8%) compared to 
other databases. Such results high-
light on-the-move operation as an 
open challenge in periocular recogni-
tion. Certain databases serve specific 
purposes. For example, CMPD con-
tains subjects before/after cataract 
surgery, a common procedure among 
elderly people. The reported results 
comparing images before/after the 
procedure (recognition rate: 30.1%) 
indicate that cataract surgery signifi-
cantly impacts periocular recognition.

In research studies, automatic 
detection of the ocular region has 
not been a primary focus. Instead, 
the emphasis has been on feature 
extraction for recognition or other 
tasks, such as soft biometrics.11 Ini-
tially, manual marking of the ROI 
or extraction after full-face detec-
tion was commonly used. In com-
parison to face detection research, 
which has spanned several decades, 
very few methods have been pro-
posed to locate the eyes directly with-
out the support of the nose-to-chin 
region.3 State-of-the-art face detec-
tors, including those based on deep 
learning (DL), are designed to detect 
the entire face. Occlusion is present in 
training databases but is not specifi-
cally controlled, nor are the methods 
trained or evaluated on their capa-
bilities when only the ocular area is 
visible. Occluded face detection has 
been attracting research recently, 
including methods that locate the 
visible parts of the face.12 However, 
these approaches primarily focus on 
analyzing face subregions (mouth, 

nose, and so on) to infer the potential 
location of the full face. Detecting the 
ocular region directly without relying 
on full-face detection or a systematic 
analysis of expected subparts is, thus, 
an underresearched area.

PERIOCULAR BIOMETRICS 
AS A STAND-ALONE 
MODALITY
One of the earliest papers on perioc-
ular biometrics was by Park et al., in 
2009.13 Simple texture operators were 
used to encode the periocular region. 
Subsequently, in 2011 (see Alonso-Fer-
nandez and Bigun3), a more detailed 
analysis was conducted, exploring 
the effectiveness of incorporating 
eyebrows, the possibility of fusing 
face and periocular modalities, the 
impact of varying poses and illumina-
tion, masking the iris and eye region, 
and so on. In particular, the authors 
demonstrated the benefits of the 
periocular modality when the face 
was partially occluded.

Since then, various methods have 
been employed to encode the periocu-
lar region. These include classical tex-
ture operators [local binary pattern 
(LBP), binarized statistical image fea-
ture, binary robust invariant scalable 
key point, histogram of oriented gra-
dients (HOG), scale-invariant feature 
transformation (SIFT), speeded-up 
robust feature, and so on] and filters 
(Gabor, Leung–Malik, and so forth).34 
The importance of different elements 
within the ocular region and the size 
of the region around the eye have 
been subjects of scrutiny as well.5 
For example, texture and color infor-
mation (skin, wrinkles, pores, and 
so on) are more useful in the visible 
spectrum. In the NIR spectrum, such 
cues are obfuscated (see Figure 2), so 
ocular geometry information (eyelids, 

lashes, brows, and so forth) becomes 
more relevant.

More recently, due to the prevalence 
of DL techniques, convolutional neural 
networks (CNNs) have gained popu-
larity,5 either employing off-the-shelf 
CNN features or training networks 
using autoencoders or attention mech-
anisms to guide the network to focus 
on relevant regions, such as eyebrows 
and eyelashes.10 The current state of 
the art is given by DL models. How-
ever, one drawback of these models 
is their reliance on large-scale data-
bases, which are currently lacking in 
periocular research. Most of the data-
sets mentioned in the previous section 
contain only a few thousand images 
at most. The largest available data-
set (VISOB v1.0) consists of 158,000 
images, which is one or two orders 
of magnitude lower compared to the 
datasets available in other modalities, 
such as face biometrics. Therefore, the 
scarcity of large-scale periocular data-
bases poses a challenge in advancing 
the field of periocular biometrics.

COMBINATION WITH 
OTHER MODALITIES
From the beginning, the periocular 
region has been considered valuable 
for unconstrained data acquisition in 
visual surveillance scenarios.14 How-
ever, data obtained in such settings 
often lack intrasubject permanence 
and discriminability among subjects, 
which is the main rationale for fusing 
the periocular region with other bio-
metric traits to improve the overall 
performance.

The iris, due to its biological proxim-
ity, is frequently chosen for fusion. This 
combination is especially useful when 
the iris has insufficient quality due to 
reflections, an off-axis gaze, motion, 
low resolution, and so on. Different 
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texture descriptors are used in existing 
works, such as classical Gabor kernels 
for the iris and the LBP, HOG, or Leung–
Malik for the periocular region.5 Fusion 
is typically performed at the score level. 
More recently, DL models have also been 
employed, leveraging joint attention 
mechanisms to learn relevant features 
of each region.

Fusing descriptions from the entire 
face and the periocular region is also 
common. This is beneficial when the 
face is partially occluded, exhibits sig-
nificant pose variation, or is captured 
at a close distance. As in the case of 
the iris, the idea is to obtain indepen-
dent feature representations from the 
face and periocular region, delimited 
using hard-attention mechanisms and 
fused at the feature or score levels. 
Earlier attempts included traditional 
features, such as Gabor wavelets, the 
LBP, HOG, or SIFT.3 Recent works 
explore DL solutions, such as shared 
backbones or Siamese models, with an 
independent stream for each one.

Finally, the sclera region should 
also be mentioned as another trait fre-
quently advocated for fusion with the 
periocular region.5 Various features 
and methods for sclera detection and 
segmentation have been proposed 
over the years. The sclera is particu-
larly advantageous in the visible spec-
trum, where its prominent blood ves-
sels are easily observable.

In conclusion, most studies high-
light the benefits of fusing perioc-
ular information with other neigh-
boring traits. The exception is due to 
Proença and Neves,15 who argued that 
recognition performance in the visible 
spectrum is optimized when compo-
nents within the ocular globe (iris and 
sclera) are discarded, and the recog-
nizer’s response is solely based on the 
surrounding eye information.

RECOGNITION IN 
DIFFERENT SPECTRA
Image-based biometrics utilize cam-
era sensors that measure different 
light wavelength ranges. The three 
main considered spectra are visible, 
NIR, and IR. Each poses advantages 
and restrictions for periocular bio-
metric systems and application sce-
narios.16 For example, the visible 
spectrum enables the use of many 
existing built-in cameras, offers high 
detail, and is suitable for scenarios 
such as self-verification and surveil-
lance. NIR illumination, on the other 
hand, reveals details unseen in the 
visible spectrum (for example, in iris 
recognition, as the effect of melanin 
is negligible under NIR), is less sensi-
tive to illumination variations, and is 
comfortable to the human eye because 
it is not perceivable. Such proper-
ties make NIR suitable for periocu-
lar recognition in combination with 
iris or underillumination-sensitive 
scenarios, such as head-mounted dis-
plays. However, it requires an active 
NIR invisible illumination source. IR 
imaging, also known as thermal imag-
ing, provides less information detail 
and is more sensitive to environmen-
tal variations, making it less suitable 
for periocular recognition.

At the algorithmic level, these spec-
tra capture different sets of informa-
tion from the periocular region. The 
two main periocular recognition chal-
lenges in this scope are 1) accurate rec-
ognition under each spectrum to adapt 
to different use cases and 2) accurate 
recognition in a cross-spectral setting, 
where the reference and probe are cap-
tured under different spectra.9

Recognition in the visible spec-
trum is motivated by using exist-
ing general-purpose capture devices 
for self-verif ication (for example, 

smartphones8) or surveillance sce-
narios, including occluded or masked 
faces. Numerous databases have been 
collected to develop visible periocular 
recognition (Figure 2). NIR recogni-
tion, on the other hand, is driven by 
capture devices used for iris recogni-
tion and scenarios where the visible 
spectrum is not applicable, such as 
head-mounted displays in augmented 
and virtual reality applications.17 
Solutions for intraspectrum perio-
cular recognition (NIR or visible) are 
technically similar, utilizing hand-
crafted features, deeply learned rep-
resentations, and their fusion.5 This 
interest in advancing intraspectral 
periocular biometrics led to the orga-
nization of a series of competitions, 
including the first and second Inter-
national Competition on Mobile Ocu-
lar Biometric Recognition events.6

Many applications restrict the bio-
metric reference to be captured under 
one spectrum but require the ability 
to match probes captured under other 
spectra. This raises the challenge of 
cross-spectral periocular recognition. 
Two main directions have been fol-
lowed in this regard: 1) direct compar-
ison using features less sensitive to 
spectral changes or specifically learned 
features that produce similar represen-
tations for NIR and visible images of 
the same identity10 and 2) generative 
transformation of the probe into the 
reference domain, where an intraspec-
tral recognition algorithm is applied.18 
Given this highly challenging nature, 
competitions, such as the Cross-Eyed 
series, have focused on attracting 
novel solut ion s for cross-spec t ra l 
periocular recognition.6,9 As can be 
observed in Figure 2(a), the accuracy 
in cross-spectral datasets is typically 
lower than in intraspectral NIR or vis-
ible operation.

Authorized licensed use limited to: b-on: UNIVERSIDADE DA BEIRA INTERIOR. Downloaded on June 08,2024 at 07:48:00 UTC from IEEE Xplore.  Restrictions apply. 



	 J U N E  2 0 2 4  � 45

DEMOGRAPHICS FROM 
OCULAR IMAGES
Soft biometrics refer to ancillary infor-
mation, such as age, gender, race, hand-
edness, height, weight, hair color, and 
so on, that can help when recognizing 
a person.11 Among these, demographic 
indicators (gender, age, and ethnicity) 
have special relevance because they 
can be linked to undesired discrim-
ination among population groups.19 
Soft biometrics can be computed 
from the body silhouette or the face, 
although some have suggested com-
puting them from fingerprints, irises, 
or handwriting.

In controlled scenarios, face or iris 
biometrics can be very effective to 
recognize an individual. But under 
difficult covariates in real-world con-
ditions (occlusion, subjects’ pose, illu-
mination, resolution, and so on), demo-
graphic attributes can be retrieved with 
a higher probability of success. They 
can be used in isolation or complement 
the inconclusive decision of stronger 
biometric modalities. For example, 
combining soft biometrics with perio-
cular features has shown enhanced 
overall recognition performance.20

Demographic attributes also find 
applications in targeted advertising, 
searching for individuals based on 
specific attributes, age-related access 
control, or child pornography detec-
tion. Although demographic estima-
tion is often seen as relatively easy, 
extracting such attributes in the wild 
is challenging. However, research in 
this area primarily focuses on good 
quality data and frequently uses the 
entire face, despite likely occlusions in 
unconstrained setups, such as foren-
sics or surveillance.21

Gender estimation (male/female) 
is the most widely studied attribute 
and considered the easiest due to its 

binary nature. Initial works can be 
traced back to 2010,3 cropping the 
ocular area from well-established face 
recognition databases. Later works 
i ncor porated sel f ie i m ages f rom 
smartphones and leveraged learned 
features via CNNs. Recent works 
achieve accuracies above 80%–90% in  
gender estimation.7

Ethnicity estimation poses chal-
lenges in defining classes consis-
tently across databases, and some 
people may be severely underrepre-
sented. Most databases have only two 
or three ethnic classes since they were 
not specifically acquired for ethnic-
ity estimation. Initial works can be 
also traced back to 2010, but there is 
much less literature on ocular ethnic-
ity compared to gender. Accuracies 
above 80%–90% are common as well, 
but comparing results among works is 
difficult due to differences in classes 
across databases.

Age is considered the most complex 
attribute due to internal (genetics) 
and external (health, stress, lifestyle, 
and so on) factors influencing the 
aging process. Comparatively, it is the 
most underresearched demographic 
with ocular data. Classes are often dis-
cretized (for example, children, teens, 
adults, and so forth), achieving higher 
performance compared to estimating 
exact age and allowing customization 
to requirements (for example, minors/
nonminors). Pioneering works in 2015 
used controlled data, followed later 
by selfies and in-the-wild imagery. 
Recent works barely exceed a 60%7 
accuracy, highlighting the difficulty 
of the task. It is also common to report 
the one-off accuracy, which consid-
ers classifications for adjacent age 
groups to be correct. This more toler-
ant framework provides accuracies 
above 80%.

In the past decade, the periocu-
lar modality has rapidly evolved, 
surpassing the face in cases of 

occlusion or the iris under low reso-
lution. The periocular region is the 
area around the eye, consisting of the 
sclera, eyelids, lashes, brows, and sur-
rounding skin. With a surprisingly 
high discrimination ability, it requires 
less constrained acquisition than the 
iris texture. It remains visible at var-
ious distances, even with partial face 
occlusion due to close distances or low 
resolution due to long distances. This 
makes it suitable for unconstrained 
or uncooperative scenarios where iris 
or face recognition may struggle. The 
periocular modality gained renewed 
attention during the pandemic, as 
masks left the ocular region the only 
visible facial area, even in controlled 
situations. Apart from personal rec-
ognition, periocular biometrics have 
been used for demographics7 or 
expression estimation.5 Figure 3 pro-
vides a graphical summary of perio-
cular biometrics, including aspects 
mentioned previously in the article 
and challenges discussed in the pres-
ent section.

Despite the advances mentioned 
in this article, several research chal-
lenges remain. Questions about the 
optimal size of the periocular ROI 
and the minimum resolution required 
for recognition are stil l open.4,5 
The lack of a standardized definition 
for  the periocular region leads to 
variations in the employed ROI across 
studies. For example, some studies 
exclude the sclera, iris, and pupil. 
Additionally, some consider the two 
eyes as a single instance, while oth-
ers treat each eye as a separate unit. 
Large-scale datasets and benchmarks 
are needed as well to leverage data-
hu ng r y DL schemes a nd promote 
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further research and replication.1,6 
A  recent concern affecting all bio-
metric modalities is demographic 
bias and fairness, where certain demo-
graphic groups may experience lower 
classification accuracy. This is not 
exclusive to biometrics, but it is com-
mon in automated decision-making 
systems.19 Although face algorithms 
have attracted the majority of the 
public attention in this regard, proper 
mitigation measures are also needed 

in ocular biometrics. The increas-
ing use of DL solutions also raises 
questions about explainability, due 
to their black-box nature, that is, 
why a recognition system makes cer-
tain decisions.

Other challenges that are worth 
mentioning include the following:

›› Acquisition of high-quality 
images: This is vital to any 
biometric modality. Most 

periocular datasets come from 
mobile devices or cooperative 
subjects zoomed from a close 
distance.6 Factors such as 
less-cooperative scans, motion, 
and larger standoff distances 
are underresearched. Several 
hardware solutions have been 
proposed, such as hyperfocal 
or light field sensors that fuse 
images with different focal 
lengths1 or NIR walking portals 

FIGURE 3. A graphical summary of different aspects of significance in periocular biometrics. (a) Potential scenarios of operation. 
(b) Main tasks where periocular images can be useful. (c) Some other challenges affecting periocular biometrics.
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that capture approaching indi-
viduals.3 However, they come 
with extra cost or increased 
sensor size, making them 
impractical for consumer or 
forensic applications.

›› Smartphone authentication: The 
pandemic accelerated digi-
tal service provision through 
personal devices, which have 
become data hubs containing 
sensitive information. Their 
inherent on-the-move condi-
tions cause imaging difficul-
ties that can severely degrade 
performance. Also, device 
usage in diverse environments 
introduces variability in poses, 
illumination, backgrounds, 
and so on. The availability of 
different device models with 
unknown camera specifications 
further complicates operations. 
Operation under such circum-
stances is referred to as cross 
device (different devices) or cross 
environment (different acqui-
sition environments), which 
demands mitigation methods 
to minimize adverse effects on 
performance.1

›› Heterogeneous operation: Despite 
impressive periocular recogni-
tion performance under ideal 
conditions, maintaining those 
results across different sensors, 
spectral ranges, and resolutions 
remains challenging.5,6 Part 
of this challenge is related to 
the lack of large-scale multi-
spectral databases suitable to 
train deep NNs with millions 
of parameters. The largest 
ocular database (VISOB, with 
550 subjects/158,000 images 
from three sensors) contrasts 
with the millions of images 

available to train, for example, 
face recognition models. This 
motivates recent efforts22 that 
explore identity-aware synthetic 
periocular data as a replacement 
for authentic data. Generative 
methods have shown impres-
sive ability in creating realistic 
synthetic data across various 
applications. In biometrics, they 
address privacy concerns tied to 
obtaining and publicly sharing 
benchmark databases while 
providing sufficient data for 
training DL methods.

›› Deployability: Recent works 
show the superior accuracy and 
generalizability of DL-based 
periocular recognition com-
pared to handcrafted features. 
However, such models impose 
high requirements in model size 
and computational complexity 
that make them undeployable 
on resource-critical consumer 
devices. This motivates future 
research to work toward har-
vesting the knowledge learned 
with deeper (larger) models 
and transferring it into more 
deployable models with reduced 
size and computational com-
plexity while maintaining 
performance.22

›› Invariance to age and other alter-
ations: Being a relatively recent 
addition to the family of biomet-
ric traits, various factors can 
influence periocular recogni-
tion performance, such as facial 
expressions, potential forgery 
through surgical procedures, 
and, in particular, long-term sta-
bility of periocular features, that 
is, invariance to aging. Although 
the periocular region is relatively 
more stable and less affected 

than the entire face, few studies 
have examined its impact on 
periocular methods.3,5 Analyz-
ing these factors is crucial to 
enhance confidence in perioc-
ular-based recognition systems 
and establish them as a viable 
biometric recognition solution.

›› Spoofing attacks: In parallel with 
the popularity of biometrics 
systems, their security against 
attacks has become paramount. 
The most common attack, the 
presentation attack (also known 
as spoofing), consists of presenting 
a fake biometric sample to the 
sensor. This has received exten-
sive attention with face and iris 
modalities to detect, for exam-
ple, silicon masks, printouts, 
contact lenses, or digital replays. 
Although several works exist 
with ocular images,23 their num-
ber is much more limited.5,6 
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