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Deep-learning based periocular recognition systems typically use overparameterized deep neural networks asso-
ciated with high computational costs and memory requirements. This is especially problematic for mobile and
embedded devices in shared resource environments. To perform model quantization for lightweight periocular
recognition in a privacy-aware manner, we propose and release SyPer, a synthetic dataset and generation
model of periocular images. To enable this, we propose to perform the knowledge transfer in the quantization
process on the embedding level and thus not identity-labeled data. This does not only allow the use of synthetic
data for quantization, but it also successfully allows to perform the quantization on different domains to addition-
ally boost the performance in new domains. In a variety of experiments on a diverse set of model backbones, we
demonstrate the ability to build compact and accurate models through an embedding-level knowledge transfer
using synthetic data. We also demonstrate very successfully the use of embedding-level knowledge transfer for
near-infrared quantized models towards accurate and efficient periocular recognition on near-infrared images.
The SyPer dataset, together with the evaluation protocol, the training code, and model checkpoints are made
publicly available at https://github.com/jankolf/SyPer.
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1. Introduction

Biometric systems use physical and behavioral characteristics of a
person for recognition and are increasingly used in the everyday life
[1,2]. Especially in smartphones, such systems are used to unlock the
mobile phone or important data and functions. Modern smartphones
are equipped with selfie cameras that allow the use of the face as a mo-
dality [2,3]. However, using the entire face as a biometric feature is not
always possible, especiallywhenwearing facemasks as in theCOVID-19
pandemic or when parts of the face are obscured by hands, device pos-
ture, or head position [4,5]. Instead, it is possible to use the periocular
region for recognition in this use-case [6,7], as well as other use-cases
restricted by the capturable region, e.g. head-mounted displays [8,9].
This region includes the eye, eyelids, iris, eyebrows and parts of the
cheekbone [10]. It has sufficient textural and color information and
contains enough uniqueness to allow for good recognition [3,11].
Depending on the application and purpose, either images of the face
or the periocular region in the visible spectrum or in the near-infrared
str. 5, Darmstadt 64283, Hessia,
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(NIR) spectrum are used. NIR light is not visible or perceptible to
humans. These images are used especially in the automotive sector
[12]. Images captured in the NIR spectrum are much less susceptible
to errors, as the user is not blinded by a light source.

Modern systems for face recognition (FR) and periocular recognition
(PR) use deep neural networks (DNN) with a large number of high-
precision parameters [13–15]. This causes a high memory footprint
and high computational cost, limiting the applicability in devices with
shared resources like smartphones [16–19]. An indication of the
targeted memory footprint on embedded devices is the ICCV 2019
Workshop challenge on Eye Tracking organized by Facebook [20]. In
the competition, the model size seen suitable for embedded and smart
devices was set to under 1 MB. To enable the use of DNN on resource-
restricted domains, various model architectures for DNN are presented
that reduce the number of parameters and calculations to minimize
the computational burden [21–24]. Especially for FR lightweightmodels
are developed, such as Mixfacenets [25], ShuffleFaceNet [26] and
MobileFaceNet [27]. To transfer knowledge from a larger and more
representative model to a smaller and more compact model, a special
training technique called knowledge distillation can be used [28,29].
Here, the smaller model is optimized to compute the same output
for an input as the larger model, the teacher. In this way, a similar
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performance can be achieved as with the teacher model. Although less
computational effort can be achieved through more compact models,
special hardware such as floating-point arithmetic units is still required
for execution.

In order to circumvent the high computational effort that arises from
floating point arithmetic and to reduce the memory footprint of a DNN,
model quantization can be used [30]. Inmodel quantization, the param-
eter space is reduced from floating-point to integer values that have a
much shorter bit width than the floating point number [30–34]. There-
fore the representation of these integer parameters requires much less
memory, which reduces the overall memory space required for the
model in both persistent and volatile memory. Also, depending on the
underlying hardware architecture, integer calculations are faster to
calculate than floating-point arithmetic, which overall leads to a faster
inference time. Deep learning frameworks like Pytorch can run quan-
tized models more efficiently, cutting computation time by a factor of
2 to 4 [35,36]. Typical quantization sizes for integers are 8, 6 and 4 bit
[35,37–41]. Recent works [30] applied a pre-trained generative adver-
sarial network (GAN) to synthesize images and use them for label-free
quantization of FR models. While the method was used with great
success, the GAN used is limited to a pre-trained generator model that
synthesized face images.

In our previous work [42], we were the first to show that model
quantization for PR can effectively reduce the model size and computa-
tional cost for PRwith DNN,while keeping the recognition performance
at a similar level. However, one of the major drawbacks of the model
quantization method used is that the original training dataset is needed
for achieving high recognition performance. This is problematic because
the use of the original data is often not possible without restrictions due
to data protection and privacy, which is of utmost relevance, especially
for biometric data of the face and its parts. This also limits the quantiza-
tion process to data of the same domain (e.g. capture spectrum) and to
data with identity labels. The previously applied quantization approach
performs the quantization on the classification level and can therefore
not be performed with label-free data.

In this work, we present a set of novel contributions towards build-
ing lightweight PR models in a privacy-friendly framework. The same
framework is also used to quantize PR models in a manner that adapts
their performance to new domains, the NIR domain in our case. This
work is also the first to target the synthetic generation of images of
thewider periocular region and to use them in the quantization process.
Towards these contributions, we adapt the capabilities of the GAN
StyleGAN2-ADA [43], that is extensively used in research and showed
the success of the architecture in multiple fields, and create a synthetic
periocular image dataset and generation model, SyPer. With a specifi-
cally trained generator for PR we differ from the approach used in [30]
that applied a pre-trained GAN. The created SyPer dataset allows us to
train quantized models completely without access to privacy-sensitive
authentic data.

To perform quantization without requiring training data with
identity labels, we propose using embedding-level knowledge trans-
fer. In our proposed approach, the expertise of a pre-trained, full-
precision teacher network, that uses floating-point arithmetic, is
transferred to quantized student network. As a teacher network, a
DNN that was previously trained on authentic data with identity la-
bels is used. The student is utilizing the teacher network with the
trained weights, but the network weights are quantized to integers
before knowledge transfer is applied. With this approach we over-
come onemajor challenge of our previously applied quantization ap-
proach in [42]. We take advantage of this proposed method in two
aspects. First, by enabling the quantization process using our label-
free synthetic SyPer data in a privacy-aware manner (i.e. without
using privacy-sensitive authentic data with identity labels) with a
very minor drop in the performance in comparison to quantization
based on authentic data, eliminating the other major challenge of
our previous approach [42]. Second, by enhancing the performance
2

of the quantized model in a domain different than that of the full
precisionmodel. This is achieved by the embedding-level knowledge
transfer with data from the NIR domain, where the teacher model
trained on visible spectrum images (more widely available) is quan-
tized using NIR images. With this, we successfully demonstrated the
ability of NIR-quantization that can act as a domain adaption to the
NIR domain with promising results. We successfully demonstrate
the effectiveness of our method on three diverse model backbones
on the evaluation protocols of the UFPR-Periocular and CASIA-Iris-
M1-S3 databases. As a further contribution, we will release the train-
ing code as well as the created synthetic dataset and generation
model (SyPer), the landmarks, and the cropping algorithm for all
datasets used. The data, code, and pre-trained models are to be
made available at https://github.com/jankolf/SyPer.

2. Related work

Previously works on efficient methods for biometric recognition, es-
pecially for mobile devices, were presented with different hand-crafted
and deep learning-based approaches. Scale Invariant Feature Transfor-
mation (SIFT), among others, by Ahuja et al. [44], Alonso-Fernandez
et al. [45], Ross et al. [46] or Raja et al. [47]. Park et al. [48] applied
Local Binary Patterns (LBP) to extract several features of the periocular
region. To generate a feature set of the periocular region Tan et al. [49]
used Leung-Mallik filters. In [50] Alonso-Fernandez et al. apply success-
fully Symmetry Assessment by Feature Expansion descriptors for PR.
With the advent of the new wave of deep learning, DNN were used
more frequently and successfully. A convolutional version of Restricted
BoltzmanMachineswas used byNie et al. [51] in an unsupervised learn-
ing approach to extract features. With a focus on smartphones, Raja
et al. [52] also used deep learning with deep sparse filtering to extract
features from the periocular region. Zhang et al. [53] combined the iris
and the periocular region and applied a convolutional neural network
(CNN) to extract and fuse features for biometric recognition. Unsuper-
vised learning with a convolutional autoencoder was applied by
Reddy et al. [54], beating a supervised trained ResNet50 in their evalua-
tion. To allow recognition in unconstrained scenarios with the
periocular region Zanlorensi et al. [55] reduced the within-class vari-
ability with a generative model. Alonso-Fernandez et al. [56] used
several feature extractors to combine them into one. They also success-
fully conducted cross-spectrum experiments between visible and NIR
images. Reddy et al. [57] proposed OcularNet which is using several
small CNNs, extracting from six overlapping periocular patches individ-
ual features and fuse them together, beating a ResNet50 with a model
that is 15.6x smaller. Pruning techniques were used by Almadan et al.
[58], creating an efficient DNN for ocular recognition aimed towards
mobile devices. Boutros et al. [28,59] used knowledge distillation to cre-
ate a small student network that learns from a larger teacher model.
This was applied either with a traditional setup [21,28] or on the tem-
plate level [59]. Despite these efforts towards efficient PR, only the
work that we extend in this paper [42] proposed model quantization,
but it limits itself to quantizing models evaluated on images of the visi-
ble domain and that are quantized using privacy-sensitive authentic
images with identity labels.

A main contribution of this work is to generate synthetic
periocular images and use them for model quantization, eliminating
the need of identity labels in the quantization process. Previous
works touched on generating iris and ocular identity-specific im-
ages, however, given a set of authentic images of that identity and
an arbitrary semantic segmentation [8,60]. The only closely related
work on synthetic data generation is that by Tomasevic et al. [61].
They used a generative model to create synthetic ocular images in
the visible and near-infrared domain with the main goal of creating
segmentation training data for ocular regions. Simultaneously, a se-
mantic segmentation mask is created as a segmentation label. How-
ever, this was not a generation for the whole wide periocular region,
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making our work here the first to present the generation of synthet-
ically generated data (both themodel and data will be made public).

As PR techniques are strongly related to those of FR, we shortly go
over related works that addressed FR. Qui et al. [62] use synthetization
models trained on face images to generate artificial face images. In
order to increase the performance and reduce the domain gap, among
other things caused by low intra-class variations, an identity and do-
main mixup is used. A 3dmorphable face model is used by Kortylewski
et al. [63] to synthetically generate images in different poses and illumi-
nations. This, together with realistic data, has allowed the authors to
achieve an improvement, but the synthetic data itself is not sufficient
to achieve good recognition performance. In a follow up paper [64]
the authors have identified the dataset bias of synthetic data and
show that they can be used to reduce the required authentic images,
i.e. non-generated images. In [30], Boutros et al. used a pre-trained
data generator for synthetic face images to train a quantized model
from a full-precision and larger teacher model using knowledge trans-
fer. In [65], the authors created synthetic facial images with identity in-
formation. This means that no privacy-sensitive authentic images are
needed to train FR models. In another work, Boutros et al. [66] also
used a generator system to generate synthetic images, but this time
they used further augmentationmethods and an unsupervised learning
approach to train FR models. However, synthetic periocular images
were never previously proposed to be generated, nor used to train or
quantize a recognition model.

In this paper, we are the first to investigate and propose the com-
bined use of synthetic generation to create a synthetic periocular
image dataset together with model quantization and knowledge trans-
fer. We overcome the challenge of our previous work that requires
privacy-sensitive imageswith identity labels by applyingmodel quanti-
zation on the embedding level using synthetic, label-free data.While ef-
ficient models and learning techniques such as knowledge transfer and
model quantization have been explored for FR, as well as synthetic
datasets, recent works [30] rely on pre-trained generators with a focus
on face images [30] or privacy-sensitive data for periocular images
[42]. Overall, the proposed harmonization between the used techniques
and limitations imposed by the domain and data restrictions have not
yet been applied to PR.

3. Methodology

The goal of representation learning is to create an embedding vector
from an input image. In the case of biometrics, this vector encodes the
identity of the person depicted in the image, and the system encoding
the identity information is optimized to create embedding vectors of
samples of an identity that are similar with respect to a similarity mea-
sure. Creating and learning such an embedding vector is strongly de-
pendent on the loss function used. In this paper we use an angular
margin penalty-based softmax loss, Arcface [15]. This loss function is
used to train a full-precision network that uses floating-point parame-
ters. To train a compact network from such a network, the network is
quantized, i.e. all parameters are mapped from floating-point space to-
wards integer space. This process is described in Section 3.1 and is
also used later in the work to enhance PR in the NIR domain. A core
component of this work, the generation of synthetic data for privacy-
friendly model quantization, is explained in Section 3.2.

3.1. Model quantization for periocular models

3.1.1. Model quantization
The aim of model quantization is to change the parameters and

the activation functions from floating-point, which are often repre-
sented with 32 bits, to integers with the bit width b. Integers with
different bit widths such as 8, 6, or 4 bits can be used [37–39]. The
bit width for parameters and activation functions can also be
changed individually [39,67]. In order for the network to have
3

similar performance, the DNN must behave almost identically with
integer parameters as with floating-point numbers, which is not
the case in practice. Therefore, an extra fine tuning process called
quantization-aware training (QAT) is needed [67]. This is described
in more detail in Subsection 3.1.2. The fact that the parameters are
only represented with b bits reduces the memory requirements of
the model and speeds up the computation of a forward pass
[35,36]. According the IEEE standard [68] for floating-point numbers
with 32 bits (FP32) their value range r is r ∈ [−3.4 × 1038,3.4 × 1038]
[69]. Since regularization methods and certain activation functions
are used in the training of DNN, the complete value range of FP32 is
not utilized. In practice, the values of the weights and the activation
function of the DNN are in a limited range of values. This range of
values can now also be represented by fewer numbers. A signed inte-
ger rQ with bit size b has 2b different values and a value range of
rQ ∈ [−2b−1, 2b−1 − 1]. If 256 different numbers are sufficient to
represent the range of FP32 parameters and the transformations
between individual latent spaces of the DNN, this value range can
be represented by a b = 8 bit signed integer. Let r ∈ [α,β] [70] be
the minimum and maximum occurring value within an FP32 value
range. The representation is realized by a mapping from the FP32
space to the integer space. The minimum value α is mapped to the
lower limit of the integer and β to the upper limit. The range of
values in between can either be mapped uniformly to the integer
space, where the individual values are equidistant from each other,
or non-uniformly, where the values are spaced differently. In this
work, uniform mapping is used. It is defined as [39,70].

Q rð Þ ¼ round
r
S

� �
� Z, ð1Þ

where round(⋅) rounds thefloating-point number to the nearest integer.
The constant Z specifies the zero-point shift and the mapping between
the two value ranges. It is represented as a b bit signed integer. S is
the constant scaling factor and divides the value range into equally sized
partitions. The constants are calculated as [39].

S ¼ β � α
2b � 1

, ð2Þ

Z ¼ round β ⋅
2b � 1
β � α

� 2b � 1

 !
: ð3Þ

The dequantization operator reconstructs the original FP32 value
from a quantized input [39,70]:

D rQ
� � ¼ S ⋅ rQ þ Z

� �
: ð4Þ

This dequantization operation is associated with a loss of informa-
tion since a target value can be occupied several times when projecting
onto a range of values with fewer different values. The upper and lower
bounds of the value range r, α, and β, can be calculated either dynami-
cally or statically [70]. In the dynamic calculation, the upper and lower
bounds are saved during the fine tuning of the quantized model and
then fixed after a certain time. In this work, we use dynamic calculation
because it provides better parametermapping. Quantization granularity
refers to the calculation of ranges for specific groups of parameters. In a
DNN, the convolution filters and fully-connected layers can have differ-
ent parameter ranges. Therefore, they can also be quantized differently.
We follow our previous work and use channel-wise quantization,
where the bounds are calculated separately for filters of a convolution
[42,71,72].

3.1.2. Quantization aware training
When a DNN is quantized, the parameters are not trained to deal

with the information loss due to the mapping. In order to achieve simi-
lar performance, QAT training is used. In this case, themapping between
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the value ranges is adjusted once again on a dataset [70]. In thisway, the
quantization error can be reduced, which leads to a better performance
of the model. In practice, this is implemented by simulating the quanti-
zation operations in the network by mapping an input FP32 value to an
integer value and then dequantizing it again. The backward pass
through this operation is implemented by a straight-through estimator
(STE) [73], where the derivative is implemented as a static 1 and thus
the gradient is passed on directly [70]. The original dataset can be
used as the training set, if available. If this is not available, e.g. due to
privacy, data protection reasons, or the use of label-less synthetic data,
another dataset can be used with the help of knowledge transfer, as
we will discuss in the next section. In this case, the pre-trained FP32
model is used as the teacher and the quantized model as the student.
The quantized model learns to predict the original output and can
adjust the individual upper and lower bounds, which leads to better
performance.

3.1.3. Embedding-level knowledge transfer
QAT typically requires the original labeled training dataset to fine-

tune the quantized model [39]. This is often impossible due to privacy
concerns or for the lack of labels [74]. Emerging works proposed to
fine-tune a quantized model with generated images [39,75]. Unlike
supervised learning for periocular images, where the identity labels
are used to learn a good separation of the individual identities,
embedding-level knowledge transfer (KT) does not use identity labels.
Instead, a teacher and student model is used, with the aim of transfer-
ring the knowledge about encoding identities from an input image
into a vector representation of the teacher model to the student. This
is achieved by giving an image I as input to both networks and calculat-
ing the embedding vectors for both the teacher, et and the student, es.
The loss function is mean squared error, where the distance of the two
embedding vectors is calculated:

L ¼ 1
d
∑
i ∈ N

es,i � et,i
� �2

The student is optimized to calculate embeddings that are as identi-
cal as possible to those of the teacher. The original datasets are often not
used for KT because they are no longer available or cannot be used for
privacy reasons. Instead, synthetic data is used more frequently. The
generation of synthetic periocular images is one of the core contribu-
tions of this work and is described methodically in Section 3.2.

3.2. SyPer - synthetic periocular image dataset

For QAT by KT, a dataset is needed that has, at best, very similar
distribution as the original training data. In reality, this data may not
be available, especially in biometrics, as it contains sensitive information
and is subject to special regulations. Therefore, methods are needed to
optimize and quantize models privacy-friendly. Generative Adversarial
Networks (GAN) introduced by Goodfellow et al. [76] are a method es-
tablished by a growing body of research to generate synthetic images. In
this minimax-based learning method, a generator network G and a dis-
criminator network D are used. The generator creates an image from a
latent vector z. The discriminator receives the generated image and au-
thentic images from a training set. The discriminator tries to decide
which images examined by it are authentic or artificially generated. D
is optimized to discriminate artificially generated images from authen-
tic images from the training set. G is optimized to trick the discriminator
into classifying the generated image as an authentic image. This creates
a competing scheme bywhichG is optimized to generate images as sim-
ilar as possible to the training set. In this work, we use the established
StyleGAN2-ADA [43] as the synthesis model, as it combines the proper-
ties of stable training with good synthesis ability. Preparation of the
training data and the training process of the GAN are described in
Section 4.3.
4

4. Experimental setup

In this section, the used and generated datasets are presented along
with details about the implementation, training parameters, and evalu-
ation procedure. All the training processes are performed on a GPU
server with 2 × 16 core Intel Xeon Gold 6130 s, 256GB RAM, and 4
Nvidia GeForce RTX 2080 Ti 11GB GPUs is used as hardware for the
model training.

4.1. Authentic visible periocular dataset

The UFPR-Periocular dataset by Zanlorensi et al. [80] is one of the
most comprehensive and diverse periocular datasets. In total, using
196 different mobile devices, 33,600 images from 1,122 subjects were
taken of both the left and right periocular regions. The images were
taken in 3 different sessions per participant, with a minimum interval
of 8 hours between sessions to allow for more variation in the dataset.
Therewere also no restrictions on the recording,which took place in un-
controlled environments. This results in blur, occlusion, or poor lighting
in the images, as one would expect in reality. In this way, a highly di-
verse dataset with a realistic scenario is achieved. The pre-processing
including alignment and splitting of the images was performed by the
authors of the dataset. The dataset consists of various training and eval-
uation protocols covering the individual scenarios of a biometric com-
parison. The closed world protocol covers the identification scenario.
The goal is to find the identity from a given database with a 1 : N com-
parison. In this protocol, the identities are included in both the training
and test sets. The verification scenario, where a 1 : 1 comparison takes
place with the aim of deciding whether the comparison is between
the identical identity or different identities, is covered in the open
world/closed validation and open world/open validation scenarios. In
these protocols, the identities in the test set are not included in the
training or validation set. The two protocols differ in the structure of
the evaluation set. In the closed validation case, the identities in the
training and evaluation set are the same, in the open validation the
identities in all splits, training, validation, and test, are different. Each
protocol is in three folds and is evaluated in cross-validation fashion.
We follow the approach of Uzair et al. [81] and flip the images with
label left so that they have the sameorientation as the periocular images
of the right side. The images are scaled to the common size 224 × 224
pixels and normalized with a mean of 0.5 and a standard deviation of
0.5. We follow the dataset authors and train and evaluate our FP32
models for both the closed world protocol for the identification task
and open world/closed validation for the verification task. We also use
the same evaluation metrics, which are described in more detail in the
Subsection 4.6.

4.2. Authentic near-infrared periocular dataset

CASIA-Iris-M1-S3 [79] is used as the database in the NIR spectrum.
The dataset contains 3600 authentic images of 360 subjects. The images
were captured with a mobile NIR iris scanner. As the images in the
dataset do not contain highly-detectable landmarks, they are annotated
manually. Bounding boxes are placed around the eyes, the tip of the
nose, and the corner of themouth and the respective center point is de-
termined. Not all landmarks are included in every image; regularly the
corners of the mouth are not completely visible. With the visible land-
marks, the image is aligned and the periocular regions are cropped. A
detailed description of the alignment is in Section 4.3, and a graphical
representation is shown in Fig. 2. The first 180 identities of the dataset
are used as the training set, the remaining 180 as the test set, as defined
in [79]. The sets are identical for the respective folds of the UFPR-
Periocular models and are averaged over all 3 models used. The evalua-
tion on the dataset takes place in verification mode, where each
periocular image from the test set is compared with every other image
from a different identity. Images of the same identity are compared if
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they are from the same side of the eye. Overall 6,460,200 comparisons
are made. All FP32 models trained on the identification and verification
protocols of the UFPR-Periocular dataset are tested on the NIR dataset.
The same metrics as for the visible spectrum dataset are used.

4.3. Our SyPer dataset

To allow QAT through KT to be applied on pre-trained full-precision
PRmodels, realistic synthetic periocular images are needed. To generate
such data, a GAN is trained. The Flickr-Faces-HQ (FFHQ) dataset by [77]
is used as a foundation for the generator training. To extract the
periocular region, for each image of the dataset, the landmarks for eye
centers er and el, nose tip, and mouth corners are calculated using a
pre-trained Multitask Cascaded Convolutional Networks (MTCNN)
[78] implementation. Using these landmarks, the image is aligned to a
normalized size of 1000 × 1000 pixels. A replicated border of 250 pixels
is placed around the image. The horizontal distance between the two
eye centers is calculated as d = ∥ el, x − er, x∥. The periocular region is
considered to be a square with edge length d

2 centered on the eye
landmark. This periocular region extraction follows the procedure
defined in [80]. The image extracted from the region is scaled to the
final size of 256 × 256 pixels. The periocular region extracted from the
left side of the image is flipped horizontally so that the left and right
periocular regions have identical alignment. In Fig. 1 the whole
alignment process is illustrated. Since the landmarks can not be
recognized in all input images, a total of 139,974 periocular images are
cropped from the 70,000 images of the FFHQ dataset. As the underlying
GAN network setup StyleGan2-ADA by [43] is used, with the Pytorch
version published by the authors being used for training. We follow
the training setup of the reference implementation but disable image
flip augmentations to reduce alignment errors in the synthesis process.
The StyleGan2-ADA is trained on 25,000,000 image iterations. From the
trained model, 99,840 synthetic periocular images are extracted based
on randomly samples latent vectors. Each generated image is scaled to
the final resolution of 224 × 224 pixels. Example images cropped from
the FFHQ dataset and synthesized from the trained GAN are shown in
Fig. 4. Both the SyPer dataset and the SyPer trained model will be
made publicly available.

4.4. Model architectures and full-precision training

The full-precision FP32 baseline models are each trained with the
ArcFace [15] loss on the UFPR-Periocular dataset. Each FP32 model is
trained once on the open world/closed validation protocol of the UFPR
dataset for all three folds. These models are referred to as verification
models in this paper. The models are also trained for all folds on the
closed world protocol for the identification task and are referred to as
identification models. We use the same parameters shown to be
Fig. 1. The alignment process for the FFHQ dataset [77] differs from the NIR alignment process i
the alignment can be found in Section 4.3.

5

optimal in our previous work and set s= 64,m= 1.0, with an embed-
ding size of 512. Well established and performing architectures,
ResNet18 [82], ResNet50 [82] andMobileFaceNet [27], are used as back-
bone. The variation in the backbone architecture and model size are
aimed at proving the generalizability of the proposed procedure. The
models are trained with a learning rate of 0.1 on 20 epochs. The
model with the best performance on the validation set is selected. We
also reduce the learning rate at a factor of 10 after the 8th and 15th
epochs. Momentum of 0.9 together with weight decay of 5e − 4 are
used with the Stochastic Gradient Descent optimizer. A batch size of
16 was used for MobileFaceNet and ResNet18, and a batch size of 8 for
ResNet50. Pytorch is used as the framework.

4.5. Quantization procedure

After pre-training the FP32 baseline models on authentic, visible
spectrum UFPR images, all verification and identification models are
quantized to 8 (W8A8), 6 (W6A6), and 4 (W4A4) bit integers. These
models are referred to as quantized models. The QAT is performed
using three different databases, depending on the targeted experiment.

The first database used is the training set of the authentic UFPR-
Periocular database. The second database is our novel synthetic dataset
for periocular images, SyPer. The training set of the NIR CASIA-Iris-M1-
S3 dataset is used as the third database.

In the experiments using the first, authentic database, the QAT for
the quantized models is performed using all three folds of the UFPR-
Periocular training data using the respective verification (open world/
closed validation) or identification (closed world) protocols. The quan-
tization is performed on the classifcation level, requiring the identity
labels of the respective training dataset. After QAT themodels are tested
on the respective testset of the used protocol. The models that are
quantized using authentic data are labeled as “Auth.”.

In the case of the second database, the baseline FP32 models are
quantized and QAT is performed with the synthetic images of SyPer,
allowing the QAT to be performed in a privacy-friendly manner. This
is achieved by utilizing knowledge transfer, where theQAT is performed
on the embedding level. This significant contribution of the SyPer data
generation is described in Section 4.3. After the QAT is finished, the
models are tested on the respective authentic testset of the UFPR-
Periocular protocols used for the FP32 model training. All models
quantized on SyPer are labeled as “Synth.” or “VIS / Synth.”, as they
are quantized on synthetic data in the visible spectrum.

The NIR CASIA-Iris-M1-S3 dataset, the third database used in our
experiments, is applied for QAT on the baseline models as well. All
FP32 models that were trained on the UFPR-Periocular identification
and verification protocols are quantized and QAT is performed on the
training set of CASIA-Iris-M1-S3. The applied procedure for QAT is
knowledge transfer on the embedding level. After QAT all quantized
n that the landmarks are extracted automatically byMTCNN [78]. A detailed description of



Fig. 2. The alignment process for the CASIA-Iris-M1-S3 dataset [79] differs from the visible spectrum alignment in that the landmarks for this dataset were annotated by hand. A detailed
description of the alignment can be found in Section 4.3.

Fig. 3. The quantization is applied through embedding-level knowledge transfer. A dataset is used for quantization aware training, in this case the SyPer dataset with synthetic periocular
images created in thiswork, orwith theCASIA-Iris-M1-S3 dataset [79] to achieve better andmore efficient NIR recognition performance. Both the teacher and the studentmodel receive an
image as input. The student is optimized to compute the same embedding vector as the teacher.

Fig. 4. Sample images from the cropped FFHQ dataset and synthesized images from the custom trained StyleGan2-ADA.
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Fig. 5. Genuine and imposter score distributions calculated on the CASIA-Iris-M1-S3 test set. Distributions are generated by the respective models that where quantized with data from
either CASIA-Iris-M1-S3 training set (NIR QAT) or with SyPer dataset (Synth. QAT).

Table 1
The results for all three verification backbones with their respective quantization level of 8 (W8A8), 6 (W6A6), and 4 (W4A4) bit. The QATwas performed on theUFPR [80] training set for
open world/closed validation in the verification scenario, labeled “Auth.”, as well as on the SyPer dataset presented in this paper, labeled “Synth.”. All models were tested on the open
world/closed validation test protocol of the UFPR dataset.

Model Params Bits Size (MB) QAT Verification (1:1)

AUC (%) EER (%)

ResNet18 62.560 M

FP32 250.24 – 98.51 ± 0.15 5.76 ± 0.38

W8A8 62.56
Auth. 98.41 ± 0.16 5.99 ± 0.39
Synth. 97.55 ± 0.24 7.64 ± 0.45

W6A6 46.92
Auth. 98.35 ± 0.15 6.17 ± 0.40
Synth. 96.72 ± 0.34 9.13 ± 0.61

W4A4 31.28
Auth. 75.69 ± 3.17 29.18 ± 2.70
Synth. 76.28 ± 0.06 30.69 ± 0.06

ResNet50 82.125 M

FP32 328.50 – 98.47 ± 0.17 5.88 ± 0.38

W8A8 82.13
Auth. 98.39 ± 0.18 5.99 ± 0.41
Synth. 97.47 ± 0.25 7.68 ± 0.51

W6A6 61.59
Auth. 98.29 ± 0.18 6.28 ± 0.41
Synth. 95.46 ± 0.51 11.18 ± 0.74

W4A4 41.06
Auth. 66.02 ± 1.07 37.78 ± 0.94
Synth. 63.66 ± 0.73 40.32 ± 0.54

MobileFaceNet 1.276 M

FP32 5.10 – 99.23 ± 0.05 3.86 ± 0.21

W8A8 1.28
Auth. 99.11 ± 0.05 4.22 ± 0.09
Synth. 98.51 ± 0.17 5.49 ± 0.45

W6A6 0.96
Auth. 99.18 ± 0.06 4.02 ± 0.19
Synth. 97.71 ± 0.18 7.20 ± 0.34

W4A4 0.64
Auth. 55.01 ± 3.24 50.49 ± 8.39
Synth. 61.52 ± 5.96 41.67 ± 4.45
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Table 2
Comparison of the verification ResNet18, ResNet50 and MobileFaceNet models quantized
to 8 (W8A8), and 6 (W6A6) bit and a set of models reported in [80]. The training of our
verification models was carried out on the synthetic dataset SyPer created in this work.
All models are tested on the open world/closed validation test set of the UFPR dataset.

Model Params Size (MB) Verification (1:1)

AUC (%) EER (%)

VGG16 [80,83] 135.89 M 1088 97.38 ± 0.53 8.52 ± 0.92
VGG16-Face [80,84] 135.89 M 1088 97.70 ± 0.42 7.78 ± 0.75
InceptionResNet [80,85] 55.25 M 445 99.10 ± 0.24 4.61 ± 0.65
ResNet50V2 [80,86] 49.79 M 400 98.73 ± 0.28 5.69 ± 0.64
ResNet50 [80,82] 24.61 M 198 98.60 ± 0.28 5.98 ± 0.67
ResNet50-Face [14,80] 24.61 M 198 99.18 ± 0.16 4.38 ± 0.47
Xception [80,87] 21.91 M 176 98.93 ± 0.16 5.23 ± 0.42
DenseNet121 [80,88] 7.79 M 64 99.51 ± 0.12 3.39 ± 0.46
Multi-task [80] 4.49 M 37 99.67 ± 0.08 2.81 ± 0.39
MobileNetV2 [80,89] 3.13 M 26 99.56 ± 0.08 3.17 ± 0.33
Siamese [80] 2.55 M 21 97.27 ± 0.64 8.10 ± 1.01
Pairwise [80] 2.35 M 20 98.62 ± 0.72 5.77 ± 1.57
ResNet18 W8A8 62.56 M 62.56 97.55 ± 0.24 7.64 ± 0.45
ResNet18 W6A6 62.56 M 46.92 96.72 ± 0.34 9.13 ± 0.61
ResNet50 W8A8 82.13 M 82.13 97.47 ± 0.25 7.68 ± 0.51
ResNet50 W6A6 82.13 M 61.59 95.46 ± 0.51 11.18 ± 0.74
MobileFaceNet W8A8 1.28 M 1.28 98.51 ± 0.17 5.49 ± 0.45
MobileFaceNet W6A6 1.28 M 0.96 97.71 ± 0.18 7.20 ± 0.34
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models are tested on the test split of the dataset. To investigate the im-
pact of the QAT on NIR data, all models quantized using the second
database SyPer are also tested on the testset of the NIR database.
Thesemodels were not quantized using NIR data. As the UFPR protocols
are utilizing three folds, the results of theNIR test set is the average over
all three folds.Models quantized onNIR data of CASIA-Iris-M1-S3 are la-
beled as “NIR / Auth.”, as the data used consists of authentic NIR images.

The FP32models trained on authentic UFPR-Periocular images serve
as the teacher, while the quantizedmodels are the students. A graphical
overview of the proposed knowledge transfer quantization procedure
on embedding level is shown in Fig. 3. In total, each quantized model
is trained for 10 epochs, with thefirst 5 epochs serving as the calibration
phase, where the upper (β) and lower (α) bounds are set. After the 5
epochs, these values are fixed and the parameters are adjusted to this
mapping.
Table 3
The results for all three identification backboneswith their respective quantization level of 8 (W
for closed world in the identification scenario, labeled “Auth.”, as well as on the SyPer dataset
protocol of the UFPR dataset.

Model Params Bits Size (MB) QAT

ResNet18 62.560 M

FP32 250.24 –

W8A8 62.56
Auth.
Synth.

W6A6 46.92
Auth.
Synth.

W4A4 31.28
Auth.
Synth.

ResNet50 82.125 M

FP32 328.50 –

W8A8 82.13
Auth.
Synth.

W6A6 61.59
Auth.
Synth.

W4A4 41.06
Auth.
Synth.

MobileFaceNet 1.276 M

FP32 5.10 –

W8A8 1.28
Auth.
Synth.

W6A6 0.96
Auth.
Synth.

W4A4 0.64
Auth.
Synth.
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4.6. Evaluation metrics

For all experiments, we report the Equal Error Rate (EER), which is
defined as the false match rate (FMR) or the false non-match rate
(FNMR) at the operation point where they are equal. This metric is
based on the ISO/IEC 19795–1 standard [94]. The receiver operating
characteristics (ROC) curve plots the 1 − FNMR at a given FMR. To
quantify the ROC curve, we report area under curve characteristic
(AUC), which is calculated from the ROC curve and specifies the area
under it. An area of 1.0 is the optimum and means that the system can
perfectly distinguish between the same identity, genuine, and different
identities, imposter, in comparisons. For the UFPR dataset two evalua-
tion scenarios are defined by the database authors [80], the verification
protocol and the identification protocol explained in Section 4.1. For the
verification protocol, we report the EER and AUC metrics calculated
from the given 1 : 1 comparisons of the test set. No ranking metrics
are reported as no 1 : N database is given. In the identification scenario
the respective identificationmetrics, rank 1 and rank 5, are used follow-
ing the protocol defined in [80]. Each sample of the test set is evaluated
in 1 :N comparison against the given database of identities. A ranking of
the N comparison scores is made with the most similar sample being
ranked first and the most dissimilar sample being ranked last. Rank 1
specifies the percentage of cases in which the first place contains the
identity that was queried. Rank 5 specifies in how many percent of
the cases the identity was ranked in the first five places. In this work,
the metric used is cosine similarity (as recommended in [15]), where
the angle between two embedding vectors is calculated. In the identifi-
cation protocol, we also apply 1 : 1 verification comparisons between all
the samples in the test set, reporting the EER and AUC metric of this
setup. For the NIR CASIA-Iris-M1-S3 [79] evaluation, we also follow
the reported metrics and report the EER and AUC, all in percentage.

5. Results

In this section, we summarize and discuss the results of our experi-
ments. First, we review the results for quantization on visible image
data and show the differences between quantized models in compari-
son to full precision ones along with comparing quantization based on
authentic and synthetic data. Next, the evaluation and quantization on
NIR data are discussed.
8A8), 6 (W6A6), and 4 (W4A4) bit. The QATwas performed on the UFPR [80] training set
presented in this paper, labeled “Synth.”. All models were tested on the closed world test

Identification (1:N) Verification (1:1)

Rank 1 (%) Rank 5 (%) AUC (%) EER (%)

99.61 ± 0.08 99.88 ± 0.03 99.77 ± 0.01 1.75 ± 0.05
99.54 ± 0.11 99.85 ± 0.05 99.76 ± 0.01 1.75 ± 0.02
99.37 ± 0.08 99.77 ± 0.05 99.51 ± 0.01 2.54 ± 0.07
99.48 ± 0.11 99.79 ± 0.05 99.73 ± 0.01 1.92 ± 0.04
98.39 ± 0.18 99.42 ± 0.13 99.25 ± 0.01 3.44 ± 0.06
50.96 ± 12.54 62.01 ± 11.25 86.18 ± 3.96 19.17 ± 4.12
21.53 ± 4.22 41.77 ± 5.44 88.95 ± 1.17 18.75 ± 1.39
99.54 ± 0.04 99.81 ± 0.04 99.76 ± 0.02 1.76 ± 0.04
99.47 ± 0.02 99.82 ± 0.04 99.75 ± 0.01 1.74 ± 0.02
99.42 ± 0.03 99.72 ± 0.01 99.51 ± 0.02 2.51 ± 0.06
99.34 ± 0.07 99.71 ± 0.08 99.73 ± 0.01 1.95 ± 0.09
96.60 ± 0.51 98.65 ± 0.16 98.95 ± 0.08 4.33 ± 0.23
33.24 ± 3.82 46.29 ± 4.09 80.55 ± 2.03 26.75 ± 1.98
1.92 ± 0.24 6.41 ± 1.28 75.22 ± 1.73 31.46 ± 1.35
99.87 ± 0.06 99.92 ± 0.03 99.86 ± 0.01 1.26 ± 0.09
99.79 ± 0.05 99.91 ± 0.03 99.86 ± 0.01 1.18 ± 0.08
99.77 ± 0.03 99.88 ± 0.04 99.66 ± 0.03 1.91 ± 0.15
99.80 ± 0.06 99.91 ± 0.03 99.86 ± 0.01 1.22 ± 0.13
99.53 ± 0.07 99.79 ± 0.07 99.53 ± 0.03 2.45 ± 0.14
5.53 ± 1.13 11.19 ± 2.46 62.28 ± 3.30 42.50 ± 3.99
7.01 ± 3.29 14.67 ± 6.72 75.72 ± 7.04 30.63 ± 6.01



Table 4
Comparison of the identification ResNet18, ResNet50 andMobileFaceNet models quantized to 8 (W8A8), and 6 (W6A6) bit and a set of models reported in [80]. The training of our iden-
tification models was carried out on the synthetic dataset SyPer created in this work. All models are tested on the closed world identification test set of the UFPR dataset.

Model Params Size (MB) Identification (1:N) Verification (1:1)

Rank 1 (%) Rank 5 (%) AUC (%) EER (%)

VGG16 [80,83] 135.89 M 1088 50.56 ± 3.30 68.73 ± 3.01 99.41 ± 0.11 3.59 ± 0.32
VGG16-Face [80,84] 135.89 M 1088 56.29 ± 1.62 73.84 ± 1.48 99.43 ± 0.08 3.44 ± 0.28
InceptionResNet [80,85] 55.25 M 445 65.16 ± 2.45 81.53 ± 1.99 99.78 ± 0.15 1.85 ± 0.40
ResNet50V2 [80,86] 49.79 M 400 63.18 ± 2.14 77.79 ± 1.81 99.74 ± 0.04 2.24 ± 0.18
ResNet50 [80,82] 24.61 M 198 71.06 ± 1.14 85.22 ± 0.82 99.89 ± 0.02 1.41 ± 0.10
ResNet50-Face [14,80] 24.61 M 198 73.76 ± 1.43 86.86 ± 1.02 99.83 ± 0.03 1.74 ± 0.12
Xception [80,87] 21.91 M 176 57.43 ± 1.43 75.88 ± 1.52 99.77 ± 0.04 2.19 ± 0.18
DenseNet121 [80,88] 7.79 M 64 75.54 ± 1.36 88.53 ± 0.97 99.93 ± 0.02 1.11 ± 0.09
Multi-task [80] 4.49 M 37 84.32 ± 0.71 94.55 ± 0.58 99.96 ± 0.01 0.81 ± 0.06
MobileNetV2 [80,89] 3.13 M 26 77.98 ± 1.08 90.19 ± 0.79 99.93 ± 0.01 1.13 ± 0.07
Siamese [80] 2.55 M 21 − − 98.94 ± 0.22 4.86 ± 0.44
Pairwise [80] 2.35 M 20 − − 99.44 ± 0.66 3.06 ± 1.84
ResNet18 W8A8 62.56 M 62.56 99.37 ± 0.08 99.77 ± 0.05 99.51 ± 0.01 2.54 ± 0.07
ResNet18 W6A6 62.56 M 46.92 98.39 ± 0.18 99.42 ± 0.13 99.25 ± 0.01 3.44 ± 0.06
ResNet50 W8A8 82.13 M 82.13 99.42 ± 0.03 99.72 ± 0.01 99.51 ± 0.02 2.51 ± 0.06
ResNet50 W6A6 82.13 M 61.59 96.60 ± 0.51 98.65 ± 0.16 98.95 ± 0.08 4.33 ± 0.23
MobileFaceNet W8A8 1.28 M 1.28 99.77 ± 0.03 99.88 ± 0.04 99.66 ± 0.03 1.91 ± 0.15
MobileFaceNet W6A6 1.28 M 0.96 99.53 ± 0.07 99.79 ± 0.07 99.53 ± 0.03 2.45 ± 0.14
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5.1. Quantization and visible periocular recognition

The results of the FP32 models, the quantization on 8, 6, and 4 bit
with respectively authentic and synthetic data for the QAT of the visible
identification task are shown in Table 3. For each of themodels used, the
number of parameters and the size of the model in MB are given. For
mobile devices, it is particularly relevant that there is an acceptable
trade-off between recognition performance and model size. The results
for the verification task on visible images are shown in the same format
in Table 1. Both tables show that the recognition rates only slightly drop
in almost all caseswhen quantizingwithout class labels on the synthetic
dataset SyPer instead of authentic data, however, comparable perfor-
mance is still maintained.

At 8 bits, the EER for ResNet50 in the verification task increases from
5.99% with authentic data to 7.68% when synthetic data are used for
quantization. Similar increases of 1 to 1.5 percentage points occur
with both ResNet18 and MobileFaceNet. If the models are quantized
Table 5
The results for all three verification backboneswith their respective quantization level of 8 (W8
M1-S3 training set, labeled “NIR / Auth.”, as well as on the synthetically created SyPer dataset
CASIA dataset.

Model Params Bits Size (MB)

ResNet18 62.560 M

FP32 250.24

W8A8 62.56

W6A6 46.92

W4A4 31.28

ResNet50 82.125 M

FP32 328.50

W8A8 82.13

W6A6 61.59

W4A4 41.06

MobileFaceNet 1.276 M

FP32 5.10

W8A8 1.28

W6A6 0.96

W4A4 0.64
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to 6 bits, the EER for the synthetic quantized models in the verification
protocol increases by about 2 to 3 percentage points.

In the identification task, ResNet50 loses about 3 percentage
points in the rank 1 metric. While ResNet18 and MobileFaceNet
with synthetic quantization have a weaker EER than the quantiza-
tion stage with authentic data, they hardly lose any performance in
the rank 1 and rank 5 metrics. When the models are quantized to 4
bits, performance in verification and identification tasks radically de-
creases for bothmodels, those quantized on authentic data and those
quantized on synthetic data. Due to the reduced bit width, it is
harder for the quantized model to encode the identity into a mean-
ingful vector.

A comparison of the results of the SyPer quantized model with
those of the established methods reported in [80], shown for verification
in Table 2, for identification in Table 4, shows that similarly competitive
results can be obtained with the synthetic quantization process when
model size and EER are considered together. MobileFaceNet in particular
A8), 6 (W6A6), and 4 (W4A4) bit. The QATwas performed onNIR images of the CASIA-Iris-
with visible spectrum images, labeled “VIS / Synth.”. All models were tested on test set of

QAT Verification (1:1)

AUC (%) EER (%)

– 96.54 ± 0.19 8.62 ± 0.40
NIR / Auth. 98.96 ± 0.08 4.35 ± 0.21
VIS / Synth. 96.09 ± 0.33 9.28 ± 0.62
NIR / Auth. 98.54 ± 0.09 5.51 ± 0.22
VIS / Synth. 95.82 ± 0.32 9.88 ± 0.49
NIR / Auth. 81.3 ± 1.79 26.33 ± 1.64
VIS / Synth. 74.95 ± 0.84 31.6 ± 0.64
– 96.66 ± 0.15 8.28 ± 0.25
NIR / Auth. 99.06 ± 0.10 4.12 ± 0.33
VIS / Synth. 96.27 ± 0.19 8.87 ± 0.30
NIR / Auth. 98.1 ± 0.04 6.56 ± 0.14
VIS / Synth. 95.08 ± 0.25 11.02 ± 0.32
NIR / Auth. 63.44 ± 0.41 40.36 ± 0.32
VIS / Synth. 60.42 ± 1.09 42.49 ± 0.80
– 97.81 ± 0.23 6.05 ± 0.38
NIR / Auth. 99.48 ± 0.05 2.7 ± 0.25
VIS / Synth. 97.52 ± 0.25 6.63 ± 0.38
NIR / Auth. 99.16 ± 0.16 3.91 ± 0.42
VIS / Synth. 96.87 ± 0.53 8.04 ± 0.93
NIR / Auth. 74.27 ± 5.58 32.01 ± 4.34
VIS / Synth. 65.14 ± 5.01 39.16 ± 4.07



Table 6
Comparison of the verification ResNet18, ResNet50 and MobileFaceNet models quantized
to 8 (W8A8), and 6 (W6A6) bit and a set of models reported in [79], tested on CASIA-Iris-
M1-S3 dataset [79]. Only through NIR-quantization are ourmodels able to achieve similar
performance values with regard to EER and model size.

Method Params Size (MB) EER (%)

LBP [48,79] – – 29.4
Gabor [79,90] – – 17.6
SIFT [79,91] – – 7.03
TIFS17-CosineDistance [79,92] – – 12.6
AlexNet [79,93] 60 M 232 2.83
VGG-16 [83, 79] 138 M 528 2.56
Maxout CNNs [79] 4 M 16 1.89
ResNet18 W8A8 62.56 M 62.56 4.35 ± 0.21
ResNet18 W6A6 62.56 M 46.92 5.51 ± 0.22
ResNet50 W8A8 82.13 M 82.13 4.12 ± 0.33
ResNet50 W6A6 82.13 M 61.59 6.56 ± 0.14
MobileFaceNet W8A8 1.28 M 1.28 2.70 ± 0.25
MobileFaceNet W6A6 1.28 M 0.96 3.91 ± 0.42
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is convincing at the 8 bit quantization level due to its smallmodel size and
performance, which is significantly better thanmodels with substantially
more parameters and larger memory footprints.

While the data distributions of FFHQ, and subsequently the SyPer
(generator trained on FFHQ), and UFPR authentic images might be dif-
ferent, the similar performances of models quantized using the SyPer
and the authentic UFPR data indicate that this possible domain bias
does not significantly effect the model performance. Furthermore, the
model performance on authentic data shows that QAT on synthetic
SyPer data retains the ability of identity discrimination on authentic
images.

In general, the quantization process (on authentic or synthetic data)
did prove to reduce the model size by multiple folds while maintaining
most of the accuracy, especiallywhen thequantization is performed to 6
and 8 bits models.

5.2. Quantization and NIR periocular recognition

The pre-trained FP32 models were quantized to three bit levels
using the training set of the NIR dataset. The results for the
verification-based models are shown in Table 5, and the results for the
Table 7
The results for all three identification backbones with their respective quantization level of 8 (W
Iris-M1-S3 training dataset, labeled “NIR / Auth.”, aswell as on the synthetically created SyPer da
of CASIA dataset.

Model Params Bits Size (MB)

ResNet18 62.560 M

FP32 250.24

W8A8 62.56

W6A6 46.92

W4A4 31.28

ResNet50 82.125 M

FP32 328.50

W8A8 82.13

W6A6 61.59

W4A4 41.06

MobileFaceNet 1.276 M

FP32 5.10

W8A8 1.28

W6A6 0.96

W4A4 0.64
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identification-based models are listed in Table 7. For both verification
and identification models, it is clear that the models quantized on NIR
data show very good performance in comparison even when compared
to the full precision model. This might be due to the fact that the quan-
tization process can act as a domain adaption to the NIR domain, where
the model is modified to expect a data distribution similar to that of the
NIR. If the bit width is reduced, the performance for b=6 bit decreases
only slightly. It is also the case for these models that 4 bit are not suffi-
cient to obtain a stable recognition result. The models quantized on
SyPer and therefore without NIR-quantization perform significantly
worse but only slightly worse than the full precision model. Their EER
is approximately twice as high as that of the models quantized on NIR
data. Comparing the NIR-quantized models with the models reported
in [79], verification in Table 6, identification in Table 8, it becomes
clear that even this short NIR-quantization is sufficient to obtain compa-
rable results with small compact models. As in the visible spectrum,
MobileFaceNet is a solid choice. With only a fraction of the parameters
and model size of VGG-16 and AlexNet, it achieves on b=8 bit quanti-
zation results that are very close in level.

The results of NIR-quantization clearly show the capabilities of
quantizing models on data of other spectrums. To further investigate
the recognition performance, the genuine and imposter distributions
on the NIR CASIA-Iris-M1-S3 test dataset using models with
quantization-aware training either on NIR data or synthetic SyPer data
are shown in Fig. 5. The genuine and imposter distributions of the
model quantized on authentic NIR images are stronger separated in
comparison to the distributions of models quantized on synthetic
SyPer images of the visible spectrum. In the NIR quantization approach
the distributions utilize a larger value range while maintaining separa-
bility. This underlines the possible adjustment of pre-trained models
to images of new domains through QAT. Although the FP32 teacher
model itself was not trained on NIR data, the QAT of the parameter
and quantization mappings between floating and integer space is suffi-
cient to achieve good separation and discrimination. Although the dis-
tribution of the NIR images does not correspond to those of the visible
spectrum, the network is still able to extract the identity information
from the image. This is because the structure of the skin and the eye is
also visible in the NIR spectrum and the FP32 model trained on visible
data can also extract this information, as shown in the results. The pro-
posed method of NIR-quantization is a potential candidate to boost the
8A8), 6 (W6A6), and 4 (W4A4) bit. The QAT was performed on NIR images of the CASIA-
tasetwith visible spectrum images, labeled “VIS / Synth.”. Allmodelswere tested on test set

QAT Verification (1:1)

AUC (%) EER (%)

– 95.96 ± 0.26 9.57 ± 0.46
NIR / Auth. 98.68 ± 0.08 5.11 ± 0.06
VIS / Synth. 95.41 ± 0.19 10.43 ± 0.36
NIR / Auth. 97.96 ± 0.03 6.87 ± 0.08
VIS / Synth. 94.9 ± 0.23 11.26 ± 0.35
NIR / Auth. 79.17 ± 2.10 28.11 ± 1.87
VIS / Synth. 73.11 ± 0.42 33.04 ± 0.40
– 96.0 ± 0.28 9.48 ± 0.44
NIR / Auth. 98.84 ± 0.05 4.81 ± 0.07
VIS / Synth. 95.69 ± 0.39 9.94 ± 0.61
NIR / Auth. 97.49 ± 0.19 7.87 ± 0.29
VIS / Synth. 94.63 ± 0.39 11.8 ± 0.58
NIR / Auth. 63.34 ± 1.09 40.43 ± 0.71
VIS / Synth. 60.26 ± 0.79 42.66 ± 0.56
– 96.97 ± 0.41 7.63 ± 0.65
NIR / Auth. 99.44 ± 0.02 2.94 ± 0.12
VIS / Synth. 96.35 ± 0.37 8.76 ± 0.63
NIR / Auth. 99.26 ± 0.02 3.7 ± 0.07
VIS / Synth. 95.98 ± 0.21 9.57 ± 0.29
NIR / Auth. 77.43 ± 4.35 29.72 ± 3.64
VIS / Synth. 71.01 ± 5.14 34.61 ± 4.07



Table 8
Comparison of the identification ResNet18, ResNet50 and MobileFaceNet models quan-
tized to 8 (W8A8), and 6 (W6A6) bit and a set of models reported in [79], tested on
CASIA-Iris-M1-S3 dataset [79]. Only through NIR-quantization are our models able to
achieve similar performance values with regard to EER and model size.

Method Params Size (MB) EER (%)

LBP [48,79] – – 29.4
Gabor [79,90] – – 17.6
SIFT [79,91] – – 7.03
TIFS17-CosineDistance [79,92] – – 12.6
AlexNet [79,93] 60 M 232 2.83
VGG-16 [83, 79] 138 M 528 2.56
Maxout CNNs [79] 4 M 16 1.89
ResNet18 W8A8 62.56 M 62.56 5.11 ± 0.06
ResNet18 W6A6 62.56 M 46.92 6.87 ± 0.08
ResNet50 W8A8 82.13 M 82.13 4.81 ± 0.07
ResNet50 W6A6 82.13 M 61.59 7.87 ± 0.29
MobileFaceNet W8A8 1.28 M 1.28 2.94 ± 0.12
MobileFaceNet W6A6 1.28 M 0.96 3.70 ± 0.07
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performance in the NIR domain without the need of identity labels
for the NIR domain training samples. This approach can be mapped
to any image-level domain gap. Thus, a short NIR-quantization of
visible-based models on NIR data can be sufficient to train a suit-
able NIR-compatible model. This is an advantage, as significantly
more images are available in the visible spectrum than in the NIR
spectrum and because it does not require identity labels of the
NIR images.

6. Conclusion

This work presented a set of contributions towards PR solutions that
are lightweight, adaptable to different domains, developed in a privacy-
friendly framework, along with the generation of synthetic periocular
images. This work is the first to apply generative models to periocular
images, beyond the tight ocular region. A large synthetic dataset and
generation model - SyPer - was created on which three popular neural
architectures were trained by quantization-aware training through
knowledge transfer on the embedding level. The evaluation and com-
parison with state-of-the-art models of the underlying benchmark
have shown that SyPer can reduce the model size and computational
complexity without largely compromising performance. Additionally,
by our NIR-quantization that does not require identity labels, we were
able to show that a student model can achieve very good recognition
performances in the NIR domain, even if the teacher model was only
trained on the visible domain.
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