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A Reminiscence of "Mastermind’: Iris/Periocular
Biometrics by ”In-Set” CNN Iterative Analysis
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Abstract—Convolutional neural networks (CNNs) have
emerged as the most popular classification models in biomet-
rics research. Under the discriminative paradigm of pattern
recognition, CNNs are used typically in one of two ways: 1)
verification mode (“are samples from the same person?’’), where
pairs of images are provided to the network to distinguish
between genuine and impostor instances; and 2) identification
mode (whom is this sample from?”’), where appropriate feature
representations that map images to identities are found. This
paper postulates a novel mode for using CNNs in biometric
identification, by learning models that answer to the question ’is
the query’s identity among this set?”’. The insight is a reminiscence
of the classical Mastermind game: by iteratively analysing the
network responses when multiple random samples of % gallery
elements are compared to the query, we obtain weakly correlated
matching scores that - altogether - provide solid cues to infer
the most likely identity. In this setting, identification is regarded
as a variable selection and regularization problem, with sparse
linear regression techniques being used to infer the matching
probability with respect to each gallery identity. As main strength,
this strategy is highly robust to outlier matching scores, which
are known to be a primary error source in biometric recognition.
Our experiments were carried out in full versions of two
well known irises near-infrared (CASIA-IrisV4-Thousand) and
periocular visible wavelength (UBIRIS.v2) datasets, and confirm
that recognition performance can be solidly boosted-up by the
proposed algorithm, when compared to the traditional working
modes of CNNs in biometrics.

Index Terms—Iris Recognition, Periocular Biometrics, Convo-
lutional Neural Networks.

I. INTRODUCTION

Ris biometrics is one of the most reliable human recogni-

tion technologies. Since the pioneer algorithm [6], a long
road has been travelled in this domain, leading to successful
applications such as borders control and ID cards. Recently,
the periocular region [22] was advocated as a possibility to
overcome the limitation of the iris to be used in unconstrained
data acquisition conditions, being more robust to expressions
than the whole face, while keeping remarkable discriminating
power between humans.

CNNs have turned extremely popular in tasks such as
image segmentation [16], object detection [39] and classifi-
cation [15]. The property of shift invariance gives them the
biological inspiration and keeps the number of parameters rela-
tively small, making learning a feasible task. As in many other
computer vision problems, various CNN-based iris/periocular
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recognition methods were reported in the literature (e.g., [25]
and [26]).

A. Motivation

The menagerie effect [45] is well known to biometric
researchers and practitioners: in most recognition systems,
there are groups of subjects whose genuine/impostor score
distributions are evidently different from the distributions of
the general population. In practical terms, matching data from
these subjects produces outlier scores that might compromise
the effectiveness of the whole system. The problem is particu-
larly evident in cases where degraded data are extracted from
subjects and matched only once during the recognition process
(i.e., not subjected to outlier correction), which happens in
the two most typical working modes of CNNs in biometrics,
illustrated in Fig. 1: A) “are samples from the same person?”
(1:1 mode); or B) "whom is this sample from?” (1:N mode). In
the 1:1 mode, recognition is regarded as a binary classification
problem, with pairs of query/gallery samples being shown to
the networks, to discriminate between genuine and impostors
comparisons. In the 1:N mode, samples are presented individ-
ually to the networks, to infer either the likelihood of matching
the query to identities (closed-world assumption) or to obtain
a compact description of the query that is used subsequently
by another classifier (open-world assumption).

B. Contributions

This paper describes a novel working mode of CNNs in bio-
metrics that contributes to attenuate the biometric menagerie
effect. The idea consists in inferring (during learning time) one
CNN able to answer to the in-set question: “is the query’s
identity in this set?”, when looking repeatedly to the query
plus samples of k (> 1) gallery elements. Taking profit of the
remarkable ability of CNNs to model complex feature spaces,
it is possible to obtain multiple weakly correlated responses
that - altogether - provide solid cues about the most likely
matching identity, resembling the rationale followed to play
the classical Mastermind game', while attenuating the effects
of outlier observations.

Next, in test/identification time, the method is composed of
two phases: 1) the gallery identities are iteratively sampled
and provided to the CNN, together with the query. The
CNN responses feed a Bayesian framework, where the most
unlikely matching identities are rejected, so that at the end
only the most probable identities remain; and 2) the CNN

Uhttps://en.wikipedia.org/wiki/Mastermind_(board_game)


https://en.wikipedia.org/wiki/Mastermind_(board_game)

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. ??, NO. ??, ?? 2018 2

responses are used by a variable selection and regularization
process (LASSO), that infers the probability of correspondence
between the query and each known identity.

C. Advantages and Weaknesses

Creating CNN instances composed of k+1 samples not only
increases the potential number of learning instances (having
n learning samples, (k+1) > ( ) > n, Yk > 2), but such
inputs also offer different points-of-view to the network. In this
setting, the underlying hypothesis is that looking repeatedly
to multiple objects (subjects) of different kinds facilitates to
recognize one particular class of object (subject). Also, as the
CNN sees each query/gallery sample more than one time,
and at each iteration integrated in different inputs, repeated
outlier scores will be unlikely, which potentially reduces the
menagerie effect.

As main weakness, the in-set analysis is expected to fail
(i.e., produce a false identification) when the mean score
provided by the CNN for the instances that contain the identity
corresponding to the query (genuine queries) is lower than
the mean score for the subset of instances containing one
specific impostor identity. Formally, let Xq,... X, be n in-
dependent and identically distributed (i.i.d.) random variables
describing the scores generated for genuine queries. Also,
let Y7,...Y,, be m ii.d. random variables for a subset of
impostor queries that share one specific impostor identity. Let
Sx(n) = >, X;, Sy(m) = >_,Y; and the corresponding
means X (n) = SX0)y () = S g E( ) = px,
E(Y;) = uy, Var(X;) = 0% and Var(Y;) = o%. Then, we
have E(Sx(n)) =nix, E(X(n)) = ux, (Sy(n)) = nuy
and E(Y(n)) = py. Importantly, Var(Sx(n)) =
and Var(Sy(m)) = mo} ie, Var(X(n)) = U—X and
Var(Y(m)) = % decrease with respect to n and m’. In
this context, a false positive identification will occur when
E(Y(n)) > E(X(n)), which, given the typical values of the
X, Y, distributions, will be a particularly improbable event for
large (n,m) values. Examples of X; and Y; distributions are
provided in Fig. 6 (respectively as green and red line series),
and turn evident how rare should be such event.

Finally, we note that the in-setr analysis not only beefs-up
the recognition performance with respect to the two traditional
working modes of CNNs in biometrics, but neither requires
extra amounts of learning data nor substantially increases
the temporal/spatial computational complexity of recognition.
Also, the same idea can be applied without requiring any
adaptations to other biometric traits and even to other image
classification problems.

The remainder of this paper is organized as follows: Sec-
tion II summarizes the related work, and Section III provides
a detailed description of the proposed in-set analysis. In
Section IV we discuss our results and the conclusions are given
in Section V.

Zhttp://www.jonathanjordan.staff.shef.ac.uk/IntroPS/part5.pdf

II. RELATED WORK

There is a large number of deep learning-based meth-
ods for biometric recognition, using traits such as the face
(e.g., [42], [37], [28] and [12]), the gait (e.g., [13]) or the
body silhouette (e.g. [14]). There have been several attempts
to use deep learning-based models to learn mappings between
biometric samples distance and their visual similarity. Schorff
et al. [32] described a CNN model based on triplets that
attempt to minimize distance between a sample and a genuine
(same class) gallery element, while maximising the distance to
an impostor sample. This learning scheme directly produces a
mapping from facial samples to a compact Euclidean space
where distances directly correspond to face similarity. A
similar work was due to Wu et al. [44], which introduced
a light framework to learn a compact embedding from large-
scale facial data inaccurately labelled.

In the specific case of iris/periocular recognition, we divide
the existing methods into four groups: 1) working on near-
infrared (NIR) iris data acquired under constrained acquisition
setups; 2) using visible-wavelength (VW) data to perform
iris recognition; 3) working in unconstrained environments
and using periocular VW data; and 4) aiming at soft labels
estimation.

1) NIR Iris recognition Minaee et al. [19] studied the
effectiveness of features resulting from deep learning archi-
tectures, that feed support vector machines (SVMs) working
in the multi-class one-against-all mode. Authors observe that
even this classical processing chain outperforms the former
generation of hand-crafted feature based approaches. Sim-
ilarly, Gangwar and Joshi [9] described two architectures
for CNNs that receive pairs of normalized iris samples and
report a binary (genuine/impostor) decision, concluding about
the advantages of these models with respect to hand-crafted
feature-based approaches. Zhang et al. [48] fused (at score
level) two algorithms for iris recognition: 1) based in hand-
crafted ordinal measures (multi-lobe differential filters); and
2) based in a CNN that receives pairs of normalized images
and performs binary discrimination. Authors argue that scores
from both algorithms are complementary, which maximises the
benefits of fusion with respect to the best standalone classifier.
Nguyen et al. [20] used the responses of the CNN’s fully
connected layers as feature descriptors. Five well known mod-
els (AlexNet, VGG, Inception, ResNet and DenseNet) were
fine-tuned and fed a SVM used for multi-class discrimination
(one-against-all mode), having authors reported state-of-the-
art performance. Zhao and Kumar [50] used fully CNNs to
obtain spatially meaningful iris features, using an adapted
loss function accounting for bit shifting and non-iris masking.
In all these works, the most discriminative features were
automatically inferred by the deep learning frameworks, in
opposition to the former generation of methods that explicitly
introduced several types of texture, spectral and geometrical
features claimed to be good choices for the iris recognition
task (e.g. [18]).

2) VW Iris recognition Arsalan er al. [3] proposed a
two-stage iris segmentation scheme based on CNNs that run
after a coarse estimation of the iris boundaries, based on
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Key differences between the traditional working modes of CNNs in biometric recognition (at left), and our proposal (at right). Instead of asking

to the CNNs to answer to the “are samples from the same person?” (A) or "whom is this sample from?” (B) questions, we iteratively ask “is the query
identity among this set?” (C). This yields multiple scores that were found to be weakly correlated and - altogether - provide solid cues to infer the most likely
matching identity. At the end, a variable selection and regularization technique (LASSO) is used to obtain the probabilities of matching the query to each

gallery identity.

preprocessing and edge detection steps. Similarly, Bazrafkan
etal [4] described a Fully Convolutional Deep Neural Network
model (FCDNN) to segment VW iris images of poor quality.
Menon and Mukherjee [17] assessed the applicability of CNN-
based frameworks to VW iris biometrics, using fine-tuned
frameworks based on deep residual networks.

3) VW Periocular biometrics Ahuja er al. [1] (extended
in [2]) compared the effectiveness of unsupervised/supervised
CNNss for periocular recognition in the visible spectrum (VW),
observing optimal performance when CNNs were used ex-
clusively to extract 512-dimensional feature vectors, latter
matched by the cosine similarity. Zhao and Kumar [51] fused
scores from multiple CNNs, one of them tuned according
to identity and the remaining incorporating explicit semantic
information, such as gender, ethnicity and age. The fused
model was claimed to recover comprehensive image features
and achieve superior performance, when compared to the
traditional way to use CNNs. Proenca and Neves [26] argue
that the iris region should be disregarded in the case of VW
periocular biometrics, due to corneal reflections, gaze and
frequent occlusions. Using a segmentation algorithm, the iris
was separated from the periocular region, producing multi-
class samples used in CNN learning that implicitly force the
CNN to disregard the iris region from recognition. Wang et
al. [43] described a convolutional and residual framework for
the periocular recognition, both for near-infrared and VW data,
claiming that such architecture learns in a relatively fast way
and avoids feature saturation. Raghavendra and Busch [27]
extracted texture information (using maximum response filters)
from periocular data and learned the corresponding represen-
tations by coupling four layers of regularized auto-encoders.
Rattani and Derakhshani [30] assessed the effectiveness of
CNN models (VGG-16, VGG-19, InceptionNet and ResNet),

fine-tuned for periocular recognition in handheld devices,
claiming that "fine-tuning” attains performance comparable to
”learning-from-scratch”, while demanding less quantities of
learning data. A novel concept of multi-glance was due to
Zhao and Kumar [52], in which part of the CNN intermediate
components are configured to incorporate emphasis on regions
copnsidered semanticxally important (e.g., the eyebrow and
the eye globe).

4) Soft biometrics Rattani er al. [29] used shallow CNN
(with six hidden layers) to estimate gender and age in perioc-
ular samples acquired from handheld devices. They concluded
that such frameworks still have enough discriminating power,
even in case of poor-quality samples. Similarly, Samangouei
and Chellapa [31] used shallow CNN models to estimate
soft labels, comparing the effectiveness attained when using
the whole face or exclusively the periocular band. Singh et
al. [34] presented an auto-encoder that learns discriminative
representations for gender and ethnicity information, based on
near infrared periocular data. A set of baseline results for
soft labels estimation in degraded data was announced by
Gonzalez-Sosa et al. [35].

Recently, there were several CNN-based works concerned
about the fusion of both the iris and periocular traits, as an
attempt to augment the recognition robustness to hand-held
devices. Zhang et al. [49] first applied max-out units into the
CNNS to generate compact representations for both the iris
and periocular traits, fus the discriminative features of both
modalities through weighted concatenation.

III. PROPOSED METHOD: In-Set ITERATIVE ANALYSIS
A. Learning Phase

We adopt the notation suggested by Bolle er al. [5]. Let
x € N? be an iris/periocular image (query) represented as
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a column vector, with Z(x) expressing the corresponding
identity. Let {x(V), ) ... 2(*)} be a set of k samples taken
from g gallery identities. There are two disjoint hypotheses:

Hy: Fie{l,...k}:Z(z®) = Z(x);

H,: YViec{l,...k}:Z(x®) # I(x).

Let f : N4 5 [0, 1] be the function performing the
in-set analysis, i.e., f([z,2®), 2@, .. z®]) = s with s
being the matching score. The learning phase comprises the
inference of one binary discrimination model to distinguish
between instances of k + 1 elements that follow the null
(Hp) or the alternative (H,) hypotheses. In practical terms, we
approximate f(.) by a CNN. During the leaning phase, having
n samples in the training set, we create (Z) combinations of
k gallery elements, each one (plus the query) forming one
learning instance. As illustrated in Fig. 2, in any case where the
query has the same identity of a gallery element, the instance is
considered genuine (i.e., label ’17). Otherwise, if all identities
of the k + 1 elements are different, we consider the instance
as impostor (label ”0”).

Gallery (k)
Query Label

) —
o)

Learning Instance (k+1)

Fig. 2. How the learning data is labelled: cases where two elements among
the kK 4+ 1 (4 in the example) have the same identity are considered positive
instances (i.e., label ’17). Otherwise, negative instances have all k+1 elements
with different identities associated (label ”0).

B. Recognition I: Iterative Selection of Gallery Samples

During runtime, the in-set workflow is divided into two
parts: 1) iterative selection of the k gallery elements that -
along with the query - form the CNN input; and 2) fusion of
the responses provided by the CNN to infer the probability of
matching the query to the gallery identities.

In this section we consider that the scores s assume maximal
values under the null hypothesis (Hy), i.e., when the query’s
identity is equal to one of the x(*) elements. To choose the
k gallery elements that form the CNN input at one iteration
we use the posteriors for the query’s identity being equal to
gallery identities. According to the Bayes rule, such posteriors
are given by:

_ p(s|Z(=) = i) p(Z(z) = i)
p(s)

where p(s|Z(x) = i) corresponds to the likelihood of score s

in the i*" identity distribution, p(Z() = 1) is the identity prior

and p(s) is the probability for observing the score s. However,

performing Bayesian inference according to (1) requires to

p(Z(x) = ils) , (M

provide the likelihood distributions per identity, which have
to be learned from labeled training data and would be clearly
infeasible, due to large values of g.

By relaxation, p(s|Z(x) = i) can be approximated by
p(s|Hp). This way, the probability that & corresponds to the
it" identity is given by:
p(s[Hp) p(H0)7 )

p(s)

with p(Hp) = 5, and Vi € {1,...,k}. Assuming that
p(s|Hy) and p(s|H,) are given from a training set, a Bayesian
framework allows to recursively update the p(Z(x) = i|s)
values Vi € {1,...,g}.

Let s) = [sy,...,s;] denote the t scores given by the
CNN after ¢ iterations. Under a naive-Bayes formulation, i.e.,
considering that scores s; are conditionally independent, we
obtain:

p(sV|Z(z) = i) = [] p(s;|Z(2) = ), 3)

which enables to recursively update the posteriors for each
identity:

p(se|Z(x) = i) p(Z(x) = i|s"" V)

p(Z(z) =ilsW) = p(s¢sD)

“4)
for ¢t > 1,

with p(Z(x) = i|s¥) = . Additional details are given
in [11], particularly how this recursion can be formulated in
computationally efficient matrix-vector form.

The probabilities that the query does not correspond to
the gallery identities p(Z(z) # i|s®),Vi € {1,...,g} are
obtained by probability complement and used to select the
gallery elements that form the CNN input at each iteration.
Here, the strategy is to privilege the identities that most
unlikely match the query, up to a moment when such identities
are definitely rejected, when p(Z(x) # i|s®)) > 1, (1,
close to 1). This way, a decreasing number of plausible
(and choosable) identities remain for the subsequent iterations.
Formally, the likelihood for selecting samples from the it"
gallery identity is given by the sigmoid function:

1 Lif p(Z(x) #ilsW) < 7,

l(Z) = 1+e*7m~(P(I(m)#ﬂs(t)),ﬂ;)

0 , otherwise,

&)
where (7., 7.) are the parameters that control the smoothness
and center of the sigmoid. Figure 3 illustrates the parameter-
ization of the transfer function used in all our experiments.

At each iteration, the [(¢) values determine the chances for
selecting each identity p(i) = % Let T'; be the set of
identities of the k gallery elemenjtglused in the CNN input at
iteration ¢, i.e., Ty = {Z(x™M),..., Z(x™)}. As the network
is supposed to fire when the query identity is equal to one of
the k gallery elements, a score s has one of two meanings:
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nlikely identities

Likely identities
0 . | | .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p(Z(z) # ilst)

Fig. 3. Sigmoid transfer function used in our experiments to control the
number of times each gallery sample is used as part of the CNN input (75, =
10, 7. = l). Here, the 7, value was set to 0.975 for visualization purposes
(Tp = 0.9995 was used in our experiments)

1) s = 1, in case of the null hypothesis, i.e., one element of
the input matches the query identity; or 2) s ~ 0, when no
identities in the input set are repeated.

C. Recognition II: Identification

Identification starts by estimating the probabilities that the
query identity doesn’t correspond to each gallery element, to
progressively reject some of the identities. Once a sufficient
number of iterations is reached, the problem remaining is how
to fuse the scores for the uncertain identities, i.e., those having
a non-residual probability of corresponding to the query. This
part is regarded as a variable selection and regularization
problem, and we define an indicator (characteristic) function:

1 L, if Z(z™W) e Ty

1Ty, Z(2W)) = { 0 , otherwise. ©

Let ¢j; = 1(I';,Z(x(V)) express the value of the indicator
function (6) for the j* iteration and the i*" identity (c;; = 1
denotes that the i** identity was part of the CNN input in
the jt" iteration). After ¢ iterations, the following matrix is

obtained:

€11 C12 Cig S1
C21  C22 C2g 52

C= txg,8= . t, (7)
Ct1 Ct2 ... Ciyg St

with s representing the CNN scores after ¢ iterations. Keeping
in mind that:

g
> ci=k, Vie{l,... t}, ®)
i=1

and that k£ <« g, C is a sparse matrix that determines s.
Looking to this relationship from the perspective of the corre-
lation between the inputs measurements C and the outcomes
s, yields a regression problem with variable selection and reg-
ularization, in which finding the query’s identity is equivalent
to determine the most important measurement (column of C)
for obtaining s. This is a LASSO problem, solved as described
in [40]:

& = argmin ||Ca — s)||3 s.t. |||y = 1. 9
a

The resulting vector & has g coefficients, and expresses the
likelihood of the query having equal identity to each of the
gallery elements. In the noiseless case: 3i € {1,...,¢9} : @; =
1AVj #i:d; =0, but in practical terms: 3¢ € {1,...,g} :
a;, ~ 1AVj#i:d;~0,oratleast 3i € {1,...,9}: q; >
a;,Vj # 1.

D. Computational Complexity

In terms of the learning phase, the computational (time)
complexity of the in-set analysis is roughly the same of the
baselines 1:1 and 1:N. The unique exception is the depth of the
input data and the corresponding depth of the filters used in the
first convolution layer of the CNN. A much more important
factor is the classification time cost, since this is the phase that
should run at real-time. It is known that this cost depends of
many parameters of the CNN architectures, such as the number
of convolution layers, the size each layer receptive field and
the input dimension (the architecture we used - VGG-16 - has
about 124 million weights?).

Independently of the CNN architecture, the key point is
the relative complexity of the in-set analysis, when compared
to the baselines 1:1 and 1:N working modes. During classi-
fication, we show (¢ times) groups of k + 1 elements to the
network, to reject some of the known identities (determined by
the value of 7,,). However, in all our experiments, the number
of iterations was always far below (f < g — 1) the number
of identities, being g — 1 the number of times the CNN’s
forward step runs for one query in the 1:1 mode. On the other
way, a 1:N query requires only one forward propagation of
the CNN, but it is far more demanding in terms of the amount
of data used in the learning phase to learn appropriate feature
representations.

Finally, the identification step uses the Lasso optimization
algorithm, which is done in O(g> + g*t), being g the number
of columns (number of identities) and ¢ the number of obser-
vations (CNN queries) [8]. Empirically, the average time taken
by the in-set analysis to perform one identification query was
0.716 £ 0.170 ms. (using 7, = 0.9995, k = 5 and g = 1000),
which was slightly lower than the value observed for the 1:1
analysis (0.950 £ 0.014 ms.), but higher than the 1:N mode
(0.112 £ 0.009 ms.). These values were obtained using the
hardware infrastructure and software framework described in
section [V-A, without any performance optimization concerns.

IV. RESULTS AND DISCUSSION
A. Data and Experimental Protocol

Two datasets were used in our experiments: 1) the CASIA-
IrisV4-Thousand*, for evaluating near-infrared iris recognition
performance. It contains 20,000 iris images from 2,000 classes
(eyes), with the sources of intra-class variations being mostly

3https://arxiv.org/pdf/1703.09039.pdf
4CASIA iris image database, http:/biometrics.idealtest.org
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eyeglasses and iris occlusions, due to eyelids and specular re-
flections; and 2) the UBIRIS.v2 [23], for evaluating periocular
recognition performance in VW data acquired in unconstrained
conditions. This set contains 11,102 images from 522 eyes,
taken from varying distances and subjects’ poses, leading to
some severely degraded samples (Fig. 4).

Images from both sets were resized to 150 x 200 pixels.
Additionally, in the near-infrared set, irises were segmented
according to a coarse-to-fine strategy [33], using form fitting
and geodesic active contours algorithms. The pupillary bound-
aries were described by shapes of 20 degrees-of-freedom (dof)
and the scleric boundaries by shapes of 3 dof. Next, images
were normalised into the pseudo-polar domain [7], with size of
64 x 256 pixels. The right halves of all images were discarded,
corresponding to the upper half of the irises in the original
representation, known to have the highest probability of being
occluded.

UBIRIS.v2 (Periocular)

~-

CASIA-IrisV4-Thousand (Iris)

Fig. 4. Iris/periocular datasets used in the evaluation of our method. The
upper part of the figure illustrates degraded (original + augmented) periocular
samples from the UBIRIS.v2 set, whereas the bottom rows regard original,
segmented and augmented samples of the CASIA-Iris-V4-Thousand set.

In all experiments, disjoint identities were used in the
learning/test phases. For the CASIA-IrisV4-Thousand set, only
the first 1,000 classes were used in the learning phase of
the CNN, while for the UBIRIS.v2 only the first 261 classes
were used, as described in Table 1. Performance was evaluated
according to a bootstrapping-like strategy widely reported
in biometric recognition literature (e.g. [10]): having n test
images available, the bootstrap randomly selects 0.9n images,
with experiments being repeated in each bootstrap set, and
the average and standard deviation performance values taken
at all operating points. These are the values reported in Table II

Parameter UBIRIS.v2 CASIA-IrisV4-
Thousand
Total images 11,102 20,000
Total classes 522 2,000
Learning classes 261 (1-261) 1,000 (1-1,000)

Data augmentation 18x: 12x scale + translation, 6x color

CNN learning

batch size: 256, learning rate: 0.001; momentum: 0.9

261 (262-522) 1,000 (1,001-2,000)

Test classes

Samples/class 15-30 10
Gallery samples/class 10 10
TABLE I

DETAILS ABOUT THE DATA SETS AND THE LEARNING/TEST PROTOCOLS
USED IN THE EXPERIMENTAL VALIDATION OF THE PROPOSED METHOD.

and correspond to the lines in the ROC and RANK-N plots
(with the shadowed regions denoting the standard deviations).
The MATLAB® programming language was chosen, and the
MatConvNet [41] toolbox used to learn the CNN models,
according to the details provided in Table I. A NVIDIA® Titan
X GPU with 12GB memory and 3,072 CUDA cores speeded-
up the learning processes.

B. Learning and Parameter Tuning

The VGG-16 [38] was the CNN architecture considered
for our experiments, which is one of the most popular deep
learning models for image classification. The unique adapta-
tions were related to the size of the input data: 64 x 128
for CASIA-IrisV4-Thousand data and 200 x 150 x 3 for
UBIRIS.v2 samples. Also, as the in-set method uses CNN
learning instances composed of &£+ 1 images, the CNN inputs
had £+ 1 and 3(k + 1) channels respectively for the CASIA-
IrisV4-Thousand and UBIRIS.v2 datasets, requiring filters of
the same depth in the CNN input layer.

Learning was based in the stochastic gradient descent algo-
rithm, minimizing the multinomial logistic regression (multi-
nomial logit) loss on mini-batches of 128 samples. This choice
was due to the intention of using the same loss function for all
CNN variants tested (in-set, CNN-Pairwise and CNN-SVM).
Following the parameterizations suggested by authors of the
VGG-16 model, momentum was set to 0.9, the initial learning
rate set to 0.001 and then iteratively decreased one order of
magnitude at the end of every epoch without improvements
in the validation performance. According to the strategy
described in section III-B, we used binary labels, with ~0”
being the target for any instance where the &k input samples
regard different identities and ”1” the target corresponding to
instances where one gallery element has the same class as
the query sample. Essentially, the CNN models were asked
to learn a binary discrimination problem, i.e., to distinguish
between samples of k elements that share some identity (our
null hypothesis) or not.

As data augmentation, two label-preserving transforma-
tions were used: 1) to simulate the scale and translation
samples inconsistency, patches of scale [0.75,0.90] (values
drew uniformly) were randomly cropped; and 2) as a color
transformation, the principal components of the RGB/intensity
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values in 10,000,000 pixels of the learning data were found,
and used to create synthetic images by adding to each pixel
multiples of the largest eigenvectors with magnitude equal to
their eigenvalues [15]:

X0 = x99 4 [v,va,v5] (@@ [, 2e A7), (10)

with ® denoting the element-wise multiplication, v and A
denoting the eigenvectors and eigenvalues of the learning data
covariance matrix and o € R being randomly drew from the
Gaussian N (0,0.1). As Table I describes, we chosen a factor
of 18x for the amount of augmented data, with respect to the
original size of the dataset. This value was obtained by trial-
and-error on both datasets, using {0,1,. ..} times of augmented
data and observing the variations in performance, having
stopped when the improvements became residual (even though
for the UBIRIS.v2 dataset, a higher amount of learning data
could have been used, obtaining slightly higher recognition
rates).

The initial concern was the sensitivity of the proposed
method with respect to the k& and 7, parameters, i.e., how
many images at once should be provided as CNN input (k)
and how early (7,) the gallery identities can be confidently
rejected. Overall, we observed a higher sensitivity to the 7,
parameter than to the value of £, even though in this case
only moderately low values (up to 7) were tested. Regarding
the 7, parameter, good values were observed to be larger
than 0.99, as smaller values often led to erroneous precocious
rejections of the ground identity. Oppositely, values around 1
were observed not to significantly affect performance, yet they
increased the number of identities considered in the fusion step
(section III-C). Overall, CNN queries composed of 4 gallery
elements (plus the query) yielded the optimal recognition
performance, leading to conclude that higher values would
imply to learn in feature spaces of increasing complexity that
would demand too large amounts of learning data.

The most important conclusions were drawn from the
results provided in Fig. 5, which summarizes the variations
in performance with respect to the k and 7, parameters. The
plot given at the left side illustrates the in-set performance
(3D plot) with respect to the k and 7, using as baseline the
performance attained by the pairwise matching CNN mode,
represented by white horizontal plane.

C. Results’ Insight

Fig. 6 provides the insight for the effectiveness of the in-
set analysis: the left plot compares the decision environments
obtained for CNNs working in the pairwise (continuous lines)
and the in-ser modes (dashed lines), with the green color
representing genuine scores and the red color representing
impostors’ (the distributions were approximated based in 4,096
genuine (in green) plus 4,096 impostor (in red) scores. Not
surprisingly, there is a slight degradation in the separability
between both distributions in the case of the in-set analysis,
due to the higher complexity of the feature space. This is
evident in the zoomed-in region (near the vertical axis), with
the pairwise impostors distribution showing a much narrower

0.998

0.996

S
2 0994
0.992
0.990
7
6
5 0.995
4 0.990
~ 0.985
k 3 0980 Tp
1 1
< <
0.994 1 | 0.994
0.98 . 1 3 . 7

Fig. 5. Top plot: effects of the two parameters that determine the performance
of the in-set analysis: 7, controls the minimal probability required to reject
identities, and k is the number of gallery elements used in the CNN input.
Results regard the CASIA-IrisV4-Thousand set. For reference, the horizontal
plane in the 3D plot denotes the performance attained by the 1:1 CNN mode.
The 2D plots given at the bottom part of the figure illustrate slices of the 3D
plot, to perceive the effect of the k and 7, parameters.

In-set

Pairwise

Fig. 6. Top plot: Comparison between the decision environments observed
for the in-set and 1:1 CNN modes (the genuine distributions are shown in
green, and the impostors’ appear in red. The bottom plot gives the correlation
between the scores produced by in-set and 1:1 networks (CASIA-IrisV4-
Thousand test set, showing 4,096 genuine and 4,096 impostor scores).

peak than its in-set counterpart. Essentially, this means that the
in-set CNN was not as efficient as its pairwise counterpart to
return low (= 0) matching scores for the impostor instances.
A similar observation, yet less evident, can be made for the
genuine distributions.

However, the most interesting point is to perceive which
instances had their scores degraded and by how much, which
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can be observed from the pairwise/in-set scores correlation.
The plot given at the right part of Fig. 6 correlates the
scores for pairwise (horizontal axis) and in-set (vertical axis)
analyzes, for impostor and genuine comparisons. For each
pairwise comparison, k— 1 random gallery images were added
iteratively to create the corresponding in-set samples. Under
this experimental setting, impostor observations above the
diagonal dashed line in the 2D plot represent worse perfor-
mance for the in-set than the pairwise mode, with the opposite
occurring for the genuine observations. The key observation is
that there are almost no impostor scores in the quadrant "Q;”,
as practically there are not genuine observations in “Qs”,
which will be the concerning cases (i.e., low pairwise and
high in-set impostor scores, or high pairwise and low in-set
genuine scores). However, note the large number of genuine
scores that spread along the y = 1 line, which are cases where
the pairwise CNN had difficulties to consider the comparison
as genuine, but where the iterative in-set analysis yielded much
better results in this task. We draw two main conclusions here:

1) the in-set iterative analysis decreases the probability of
(e.g., due to data acquisition settings) observing outlier
low genuine matching scores, when comparing to the
pairwise matching strategy. This is known to be a major
error source of biometric recognition, particularly in case
of poor quality samples;

2) globally, the in-set iterative analysis provides slightly
higher (worse) impostor scores and slightly lower
(worse) genuine scores than pairwise matching. How-
ever, such deteriorations play a minor role in the final
recognition performance, as the deviations are typical
far from the critical uncertain region that separates both
classes.

D. Baseline Methods

The main baselines considered were the traditional working
modes of CNNs in biometric recognition: using pairwise com-
parisons (1:1, CNN-Pairwise), or providing samples individu-
ally to the networks and using the feature descriptions from
the first fully connected layer to feed a SVM for classification
(1:N, CNN-SVM). In all cases, the VGG-16 architecture was
chosen, with the unique adaptation regarding the depth of the
filters in the input layer, that was set equal to the number of
channels in the input data (”2” for the CNN-Pairwise and ’1”
for the CNN-SVM).

As additional iris recognition baselines, we have chosen: 1)
Sun and Tan’s method [36], with di-lobe and tri-lobe filters,
Gaussian kernels 5 x 5, o = 1.7, inter-lobe distances {5,9}
and sequential feature selection; 2) Yang et al. [46]’s method
(using the O?PT iris-only variant, with block size w = 2, h =
14, translation vector [6,3]7 and neighbourhood 8 x 8); and
3) the OSIRISv4 framework [21], to represent the processing
chain proposed by Daugman [7]. The used version segments
the iris based on the Viterbi algorithm and normalizes data
according to the Rubber Sheet scheme. Feature extraction is
carried out using a set of 2D-Gabor filters and iriscodes are
matched by the Hamming distance.

Additionally, two baselines were chosen for periocular
recognition: 1) Zhao and Kumar [47]’s method, using fea-
ture representations from a pair of CNNs, with one network
learning semantic information (’right”/’left” eye classes and
gender), and the other inferring samples’ identity. The feature
vectors from both networks were matched according to a
log likelihood ratio, in a verification (1:1) setting; and 2)
Proenca [24]’s method, using shape and texture descriptors
to parameterize a weak biometric expert (periocular), and
multi-lobe differential filters from the RGB, HSV, XYZ and
Opponent-RGB colour spaces to characterise the iris. These
methods were selected not only to represent the hand-crafted
feature-based recognition strategies, but also the deep learning-
based frameworks, while both aiming at increasing the recog-
nition robustness to degraded data.

E. Performance Comparison

Fig. 7 provides the ROC curves for the CASIA-IrisV4-
Thousand (at left) and UBIRIS.v2 (at right) sets, express-
ing the recognition performance in the verification mode.
In all cases, the lines represent the average performance
in the bootstrap sub-sets and the shadowed regions denote
the standard deviation values observed at each performance
point. Overall, the in-set strategy solidly outperformed all
competitors, not only with respect to the CNN-Pairwise and
CNN-SVM strategies, but also the hand-crafted feature-based
and deep-learning based methods. Importantly, this happened
in practically all regions of the performance space, and in
most parts providing disjoint performance confidence intervals
with respect to the other methods. Inside each ROC, we
provide the corresponding values in logarithmic scale, that turn
particularly evident the solid improvements in performance for
low false acceptance rates, which is particularly important for
large scale applications. The CNN-Pairwise was the runner-up
in most regions of the performance space, with exception to
the region with the lowest levels of false acceptances, where
pairwise matching was affected by outlier genuine matching
scores. In all cases, the hand-crafted feature-based methods
got far worse performance than the deep-learning based tech-
niques, which also accords the most recent reports comparing
the performance attained by both families of methods.

As a complement, Fig. 8 provides the counterpart results
for the identification mode, showing the accumulated rank-
n curvesin linear and logarithmic scales. Overall, results
accord the performance levels previously observed for the
verification mode, with the proposed in-set analysis obtaining
over 0.99 rank-1 average accuracy in the CASIA-IrisV4-
Thousand set, and over 0.88 in the challenging UBIRIS.v2
data. Regarding the baselines, Yang et al. [46] got the second
best performance in iris data, while on the more challenging
periocular environment, the method due to Zhao and Ku-
mar [47] was consistently better than the hand-crafted based
Proenga’s approach. Also, in this case, it should be noted that
we performed some preliminary experiments using additional
semantic features (eye color), that point that the performance
Zhao and Kumar [47] ’s method might be boosted up in case
that additional reliable semantic features are used.
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Fig. 7. Comparison between the ROC curves obtained for the in-set CNN analysis, with respect to the pairwise and CNN-SVM modes. Also, as baselines,
the results obtained by our implementations of the methods due to Yang et al. [46], Sun and Tan [36] and OSIRIS [21] for iris recognition and to Zhao and
Kumar [47] and Proenca [24] for periocular recognition are given (the standard deviation in performance observed in 10 bootstrap test subsets is denoted by

the shaded region of each line series).
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Fig. 8. Comparison between the accumulated rank-n curves obtained for the in-set CNN analysis, with respect to the pairwise and CNN-SVM modes. Also,
as baselines, the results obtained by our implementations of the methods due to Yang et al. [46], Sun and Tan [36] and OSIRIS [21] for iris recognition and
to Zhao and Kumar [47] and Proenga [24] for periocular recognition are given (the standard deviation in performance observed in 10 bootstrap test subsets

is denoted by the shaded region of each line series)

Overall, we observed that OSIRIS matching scores tended to
degrade evidently in case of samples inaccurately segmented
by the Viterbi algorithm, while Sun and Tan’s approach faced
difficulties in case of large occlusions in regions that were
almost noise-free in the whole learning set. In these cases, the
learned set of filters extracts data from poorly discriminating
regions of the irises. Being phase-based, the approach of Yang
et al. suffered particularly in cases where the irises pairs were
(even slightly) shifted, as a result of changes in roll angle.

As a summary, Table II includes three performance mea-
sures (AUC, Rank-1 and EER) for the methods evaluated, in
the CASIA-IrisV4-Thousand and UBIRIS.v2 sets. The average
values in the 10 bootstrap test subsets are given, together with
the corresponding standard deviation values (denoted by the
=+ symbol).

V. CONCLUSIONS AND FURTHER WORK

This paper describes a novel way to use CNNs in biometrics.
The idea is to obtain an answer to the in-set question: “is the

| Method AUC Rank-1 EER
CASIA-IrisV4-Thousand
In-Set Analysis (K=3) | 0.999 & 4e~* | 0.991 £ 0.021 | 0.003 £ 2¢73
CNN-Pairwise 0.997 & 4e~* | 0.770 & 0.026 | 0.029 =+ 3e~3
CNN-SVM 0.995 + 5e~* | 0.871 & 0.025 | 0.018 &+ 3¢~3
Sun and Tan [36] 0.980 + 6e~* | 0.823 & 0.036 | 0.052 4 3e~3
Yang ez al. [46] 0.988 + 6e~% | 0.849 & 0.031 | 0.045 & 4e~3
OSIRIS [21] 0.987 £ 6e~% | 0.844 & 0.026 | 0.048 & 4¢3
UBIRIS.v2
In-Set Analysis (K=3) | 0996 4+ 4e~* | 0.880 £ 0.029 | 0.027 & 3e~3
CNN-Pairwise 0.994 + 6e~% | 0.807 & 0.035 | 0.039 & 4e~3
CNN-SVM 0.990 + 6e~% | 0.763 & 0.033 | 0.051 & 4e~3
Proenca [24] 0.965 + 1e™3 | 0514 £ 0.038 | 0.114 & 9¢~3
Zhao and Kumar [50] | 0.984 4+ 5e¢~% | 0.595 + 0.027 | 0.106 & 2¢~3
TABLE II

PERFORMANCE SUMMARY OF THE in-set ANALYSIS (K'=3) WITH RESPECT
TO THE OTHER TYPICAL WAYS CNNS ARE USED IN BIOMETRIC
RECOGNITION ("CNN-PAIRWISE” AND "CNN-SVM”) AND TO FIVE
BASELINE METHODS.
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query’s identity in this set?”, by showing to the network not
only the query but also k gallery elements at once. Iteratively,
if multiple random gallery samples are used, we concluded
that many weakly correlated CNN matching scores can be
obtained, which altogether provide solid cues about the most
likely matching identity, resembling the rationale followed to
play the classical Mastermind game. At the end, by analysing
the CNN responses, identification is regarded as a variable
selection and regularization problem, solved by sparse linear
regression techniques, in which finding the true identity is
equivalent to determine the most important measurement, for
the set of observed scores.

Using k& + 1 samples as CNN input not only augments
the potential amount of learning data (having n learning
samples, (kj_l) > (Z) > n, Vk > 2), but can also be
seen as an attempt to recognize one particular class of object
(subject) from different perspectives, i.e., when comparing it
to samples of many other object types. Being known as heavily
data-driven models, both properties contribute to improve the
CNN’s classification performance.

The experimental validation of our method was carried out
in two well known iris/periocular data sets (CASIA-IrisV4-
Thousand and UBIRIS.v2). In both cases, the proposed in-
set method got solidly the best results among all competitors
tested, without substantially overloading the temporal com-
plexity of the recognition task. It should be noted that these
results were observed for full versions of the data sets, i.e.,
without disregarding any sample or using any friendly version
of the datasets.

ACKNOWLEDGEMENTS

This work was supported by PEst-OE/EEI/LA0008/2013 re-
search program. Also, we acknowledge the support of NVIDIA
Corporation®, by the donation of one Titan X GPU.

REFERENCES

[1] K. Ahuja, R. Islam, F. Barbhuiya and K. Dey. A Preliminary Study of
CNNs for Iris and Periocular Verification in the Visible Spectrum. In
proceedings of the 23"¢ International Conference on Pattern Recogni-
tion (ICPR’16), pag. 181-186, 2016. 3

[2] K. Ahuja, R. Islam, F. Barbhuiya and K. Dey. Convolutional neural
networks for ocular smartphone-based biometrics. Pattern Recognition
Letters, vol. 91, pag. 17-26, 2017. 3

[3] M. Arsalan, H. Hong, R. Naqvi, M. Lee, M. Kim, D. Kim, C. Kim and
K. Park. Deep Learning-based Iris Segmentation for Iris Recognition in
Visible Light Environment. Symmetry, vol. 9, no. 11, ID: 263, 2017. 2

[4] S. Bazrafkan, S. Thavalengal and P. Corcoran. An End to End Deep
Neural Network for Iris Segmentation in Unconstraint Scenarios. https:
/larxiv.org/pdf/1712.02877, 2017. 3

[5] R.M. Bolle, S. Pankanti, J.H. Connell and N. Ratha. Iris Individuality:
A Partial Iris Model. Proceedings of the 17th International Conference
on Pattern Recognition (ICPR’04), vol. 2, pag. 927-930, 2004. 3

[6] J. Daugman. High Confidence Visual Recognition of Persons by a Test
of Statistical Independence. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 15, no. 11, pag. 1148-1161, 1993. 1

[7]1 J. Daugman. How Iris Recognition Works. [EEE Transactions on
Circuits and Systems for Video Technology, vol. 14, no. 1, pag. 21-30,
2004. 6, 8

[8] B. Efron, T. Hastie, I. Johnstone and R. Tibshirani. Least Angle
Regression. The Annals of Statistics, vol. 32, no. 2, pag. 407-499, 2004.
5

[9]1 A. Gangwar and A. Joshi. DeeplrisNet: Deep Iris Representation With
Applications in Iris Recognition and Cross-Sensor Iris Recognition. In
proceedings of the IEEE International Conference on Image Processing
(ICIP’16), doi: 10.1109/I1CIP.2016.7532769, 2016. 2

[10] K. Hollingsworth, K. W. Bowyer and P. Flynn. Improved Iris Recog-
nition Through Fusion of Hamming Distance and Fragile Bit Distance.
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
33, no. 12, pag. 2465-2476, 2011. 6

[11] M. Huber, A. Merentitis, R. Heremans, M. Niessen, C. Debes and
N. Frangiadakis. Bayesian Score Level Fusion for Facial Recognition.
In proceedings of the IEEE International Conference Multisensor Fusion
and Integration for Intelligent Systems (MFI’16), doi: 10.1109/MFL
2016.7849516, 2016. 4

[12] G. Hu, Y. Yang, D. Yi, J. Kittler, W. Christmas, S. Li and T. Hospedales.
When Face Recognition Meets with Deep Learning: an Evaluation of
Convolutional Neural Networks for Face Recognition. In proceedings
of the IEEE International Conference on Computer Vision Workshops
(ICCVW’15), doi: 10.1109/ICCVW.2015.58, 2015. 2

[13] M. M-Jimnez, F. Castro, N. Guil. F. de la Torre and R. M-Carnicer.
Deep multi-task learning for gait-based biometrics. In proceedings of
the IEEE International Conference on Image Processing (ICIP’17), doi:
10.1109/1CIP.2017.8296252, 2017. 2

[14] H. Jin, X. Wang, S. Liao and S. Li Deep Person Re-Identification
with Improved Embedding and Efficient Training. In proceedings of
the IEEE International Joint Conference on Biometrics (IJCB’17), doi:
10.1109/BTAS.2017.8272706, 2017. 2

[15] A. Krizhevsky, I. Sutskever and G. Hinton. Imagenet classification with
deep convolutional neural networks. In Proceedings of the Advances
in Neural Information Processing Systems Conference (NIPS’12), pag.
1097-1105, 2012. 1, 7

[16] J. Long, E. Schelhamar and T. Darrell. Fully Convolutional Networks
for Semantic Segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’15), pag. 640-651,
2015. 1

[17] H. Menon and A. Mukherjee. Iris biometrics using deep convolutional
networks. In proceedings of the 2018 IEEE International Conference
on Instrumentation and Measurement Technology (I2MTC’18) , doi: 10.
1109/12MTC.2018.8409594, 2018. 3

[18] S. Minaee, A. Abdolrashidi and Y. Wang. Iris recognition using
scattering transform and textural features. In proceedings of the
Signal Processing and Signal Processing Education Workshop doi:
10.1109/DSP-SPE.2015.7369524, 2015. 2

[19] S. Minaee, A. Abdolrashidiy and Y. Wang. An experimental study
of deep convolutional features for iris recognition. In proceedings
of the IEEE Signal Processing in Medicine and Biology Symposium
(SPMB’16), doi: 10.1109/SPMB.2016.7846859, 2016. 2

[20] K. Nguyen, C. Fookes, A. Ross and S. Sridharan. Iris Recognition
with Off-the-Shelf CNN Features: A Deep Learning Perspective. I[EEE
Access, doi: 10.1109/ACCESS.2017.2784352, 2017. 2

[21] N. Othman, B. Dorizzi and S. Garcia-Salicetti. OSIRIS: An open source
iris recognition software. Pattern recognition Letters, vol. 82, no. 2, pag.
124-131, 2016. 8, 9

[22] U. Park, R. Jilela, A. Ross and A. Jain. Periocular Biometrics in the
Visible Spectrum. [EEE Transactions on Information Forensics and
Security, vol. 6, no. 1, pag. 96-106, 2011. 1

[23] H. Proenga, S. Filipe, R. Santos, J. Oliveira and L. A. Alexandre. The
UBIRIS.v2: A Database of Visible Wavelength Iris Images Captured On-
The-Move and At-A-Distance. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 32, no. 8, pag. 1529-1535, 2010. 6

[24] H. Proenga. Ocular Biometrics by Score-Level Fusion of Disparate
Experts. IEEE Transactions on Image Processing, vol. 23, no. 12, pag.
5081-5093, 2014. 8, 9

[25] H. Proenca and J. Neves. IRINA: Iris Recognition (even) in Inaccurately
Segmented Data. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’17), doi: 10.1109/CVPR.2017.
714,2017. 1

[26] H. Proenca and J. Neves. Deep-PRWIS: Periocular Recognition Without
the Iris and Sclera Using Deep Learning Frameworks. IEEE Transac-
tions on Information Forensics and Security, vol. 13, no. 4, pag. 888—
896, 2018. 1, 3

[27] R. Raghavendra and C. Busch. Learning Deeply Coupled Autoencoders
for Smartphone Based Robust Periocular Verification. In proceedings
of the International Conference on Image Processing (ICIP’16), doi:
10.1109/1CIP.2016.7532372, 2016. 3

[28] R. Ranjan, S. Sankaranarayanan, A. Bansal, N. Bodla, J-C. Chen,
V. Patel, C. Castillo and R. Chellappa. Deep Learning for Understanding
Faces: Machines May Be Just as Good, or Better, than Humans. [EEE
Signal processing Magazine, vol. 35, issue 1, pag. 66-83, 2018. 2

[29] A. Rattani, N. Reddy and R. Derakhshani. Convolutional Neural
Network for Age Classification from Smart-phone based Ocular Images.


https://arxiv.org/pdf/1712.02877
https://arxiv.org/pdf/1712.02877
10.1109/ICIP.2016.7532769
10.1109/MFI.2016.7849516
10.1109/MFI.2016.7849516
10.1109/ICCVW.2015.58
10.1109/ICIP.2017.8296252
10.1109/BTAS.2017.8272706
10.1109/I2MTC.2018.8409594
10.1109/I2MTC.2018.8409594
10.1109/DSP-SPE.2015.7369524
10.1109/SPMB.2016.7846859
10.1109/ACCESS.2017.2784352
10.1109/CVPR.2017.714
10.1109/CVPR.2017.714
10.1109/ICIP.2016.7532372

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. ??, NO. ??, ?? 2018 11

[30]

[31]

[32]

(33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(501

(511

In proceedings of the IEEE International Joint Conference on Biometrics
(IJCB’17), doi: 10.1109/BTAS.2017.8272766, 2017. 3

A. Rattani and R. Derakhshani. On Fine-tuning Convolutional Neural
Networks for Smartphone based Ocular Recognition In proceedings of
the IEEE International Joint Conference on Biometrics (IJCB’17), doi:
10.1109/BTAS.2017.8272767, 2017. 3

P. Somangouei and R. Chellapa. Convolutional Neural Networks for
Attribute-based Active Authentication On Mobile Devices. In proceed-
ings of the IEEE 8th International Conference on Biometrics Theory,
Applications and Systems (BTAS’16), doi: 10.1109/BTAS.2016.7791163,
2016. 3

F. Schroff, D. Kalenichenko and J. Philbin. FaceNet: A Unified
Embedding for Face Recognition and Clustering. https://arxiv.org/abs/
1503.03832, 2015. 2

S. Shah and A. Ross. Iris Segmentation Using Geodesic Active
Contours. [EEE Transactions on Information Forensics and Security,
vol. 4, no. 4, pag. 824-836, 2009. 6

M. Singh, S. Nagpal, M. Vatsa, R. Singh, A. Noore and A. Majumdar.
Gender and Ethnicity Classification of Iris Images using Deep Class-
Encoder. In proceedings of the IEEE International Joint Conference on
Biometrics (IJCB’17), doi: 10.1109/BTAS.2017.8272755, 2017. 3

E. G.-Sosa, J. Fierrez, R. V.-Rodriguez and F. A.-Fernandez. Facial
Soft Biometrics for Recognition in the Wild: Recent Works, Annotation
and COTS Evaluation. IEEE Transactions on Information Forensics and
Security, vol. 13, no. 8, pag. 2001-2014, 2018. 3

Z. Sun and T. Tan. Ordinal Measures for Iris Recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no.
12, pag. 221-2226, 2009. 8, 9

Y. Sun, X. Wang and X. Tang. Hybrid Deep Learning for Face
Verification. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 38, no. 10, pag. 1997-2009, 2016. 2

K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. https://arxiv.org/abs/1409.1556, 2014.
6

C. Szegedy, A. Toshev and D. Erhan. Deep Neural Networks for
Object Detection. In proceedings of the Advances in Neural Information
Processing Systems Conference (NIPS’13), pag. 2553-2561, 2013. 1
R. Tibshirani. Regression shrinkage and selection via the lasso. Journal
Royal Statistical Society B, vol. 58, no. 1, pag. 267-288, 1996. 5

A. Vedaldi and K. Lenc. MatConvNet — Convolutional Neural Net-
works for MATLAB. In proceedings of the 23”¢ ACM International
Conference on Multimedia, pag. 689-692, 2015. 6

D. Wang, C. Otto and A. Jain. Face Search at Scale. IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pag. 1122—
1136, 2017. 2

Z. Wang, C. Li, H. Shao and J. Sun. Eye Recognition with Mixed
Convolutional and Residual Network (MiCoRe-Net). IEEE Access, doi:
10.1109/ACCESS.2018.2812208, 2018. 3

X. Wu, R. He, Z. Sun and T. Tan. A Light CNN for Deep Face
Representation With Noisy Labels. IEEE Transactions on Information
Forensics and Security, vol. 13, no. 11, pag. 2884-2896, 2018. 2

N. Yager and T. Dunstone. The Biometric Menagerie. IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 32, no. 2, pag. 220-
230, 2010. 1

G. Yang, H. Zeng, P. Li and L. Zhang. High-Order Information for Ro-
bust Iris Recognition Under Less Controlled Conditions. In proceedings
of the International Conference on Image Processing (ICIP’15), pag.
4535-4539, 2015. 8, 9

Z. Zhao and A. Kumar. Accurate Periocular Recognition under Less
Constrained Environment Using Semantics-Assisted Convolutional Neu-
ral Network. IEEE Transactions on Information Forensics and Security,
vol. 12, no. 5, pag. 1017-1030, 2016. 8, 9

Q. Zhang, H. Li, Z. Sun, Z. He and T. Tan. Exploring Complementary
Features for Iris Recognition on Mobile Devices. In proceedings of
the International Conference on Biometrics (ICB’16), doi: 10.1109/1CB.
2016.7550079, 2016. 2

Q. Zhang, H. Li, Z. Sun and T. Tan. Deep Feature Fusion for Iris
and Periocular Biometrics on Mobile Devices. IEEE Transactions on
Information Forensics and Security, vol. 13, no. 11, pag. 2897-2912,
2018. 3

Z. Zhao and A. Kumar. Towards More Accurate Iris Recognition Using
Deeply Learned Spatially Corresponding Features. In proceedings of
the International Conference on Computer Vision (ICCV’17), doi: 10.
1109/ICCV.2017.411, 2017. 2,9

Z. Zhao and A. Kumar. Accurate Periocular Recognition Under Less
Constrained Environment Using Semantics-Assisted Convolutional Neu-

[52]

ral Network. IEEE Transactions on Information Forensics and Security,
vol. 12, no. 5, pag. 1017-1030, 2017. 3

Z. Zhao and A. Kumar. Improving Periocular Recognition by Explicit
Attention to Critical Regions in Deep Neural Network. [EEE Trans-
actions on Information Forensics and Security, vol. 13, no. 12, pag.
2937-2952, 2018. 3

Hugo Proenca (SM’12), B.Sc. (2001), M.Sc. (2004)
and Ph.D. (2007) is an Associate Professor in
the Department of Computer Science, University
of Beira Interior and has been researching mainly
about biometrics and visual-surveillance. He was the
coordinating editor of the IEEE Biometrics Council
Newsletter and the area editor (ocular biometrics) of
the IEEE Biometrics Compendium Journal. He is a
member of the Editorial Boards of the Image and
Vision Computing, IEEE Access and International
Journal of Biometrics. Also, he served as Guest

Editor of special issues of the Pattern Recognition Letters, Image and Vision
Computing and Signal, Image and Video Processing journals.

Joao C. Neves (M’15) received the B.Sc. and
M.Sc. degrees in Computer Science from the Uni-
versity of Beira Interior, Portugal, in 2011 and 2013,
respectively. He is currently working towards the
Ph.D. degree from the same university in the area of
biometrics. His research interests include computer
vision and pattern recognition, with a particular
focus on biometrics and surveillance.


10.1109/BTAS.2017.8272766
 10.1109/BTAS.2017.8272767
10.1109/BTAS.2016.7791163
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
10.1109/BTAS.2017.8272755
https://arxiv.org/abs/1409.1556
10.1109/ACCESS.2018.2812208
10.1109/ICB.2016.7550079
10.1109/ICB.2016.7550079
10.1109/ICCV.2017.411
10.1109/ICCV.2017.411

