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Multiphase active contour based models are useful in identifying multiple regions with spatial
consistency but varying characteristics such as the mean intensities of regions. Segmenting brain
magnetic resonance images (MRIs) using a multiphase approach is useful to differentiate white and gray
matter tissue for anatomical, functional and disease studies. Multiphase active contour methods are
superior to other approaches due to their topological flexibility, accurate boundaries, robustness to image
variations and adaptive energy functionals. Globally convex methods are furthermore initialization
independent. We extend the relaxed globally convex Chan and Vese two-phase piecewise constant
energy minimization formulation of Chan et al. (2006) [1] to the multiphase domain and prove the
existence of a global minimizer in a specific space which is one of the novel contributions of the paper.
An efficient dual minimization implementation of our binary partitioning function model accurately
describes disjoint regions using stable segmentations by avoiding local minima solutions. Experimental
results indicate that the proposed approach provides consistently better accuracy than other related
multiphase active contour algorithms using four different error metrics (Dice, Rand Index, Global Consis-
tency Error and Variation of Information) even under severe noise, intensity inhomogeneities, and partial
volume effects in MRI imagery.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The aim of image segmentation is to obtain meaningful
partitions of an input image into a finite number of disjoint
homogeneous objects. Active contour models are popular in the
regard. Chan and Vese [2] proposed an active contour without
edges scheme based on the classical work of Mumford and Shah
[3] variational energy minimization model. Since biomedical
images typically have multiple regions of interest with different
characteristics, deriving a multiphase active contour scheme for
efficient segmentation is an important area of research in image
processing [4–6].

Measuring brain activity and structure using neuroimaging,
combined with behavioral and genetic data to characterize human
brain connectivity is one of the major goals of The Human
Connectome Project (HCP) [7]. Systematic processing and analysis
of the MRI (magnetic resonance image) data collected by the HCP
for 1200 subjects will be an extremely challenging task. Automated
segmentation of multimodal imagery such as T1-weighted, T2-
weighted anatomical scans, diffusion imaging, resting state and
task-evoked functional MRI will enable quantitative characteriza-
tion of similarities and differences in structural connectivity and
brain activity differences between individuals. Cognitive processes
such as memory, language, emotion, decision-making, and social
cognition are all being studied as part of the HCP. One of the basic
quantitative image analysis tasks that is expected to be necessary
in the neuro-informatics data processing workflow is brain region
segmentation. The multi-region brain MRI segmentation algorithm
developed in this paper will facilitate the large scale efforts under-
way in functional connectomics and can be adapted for building an
activity map of the brain.

In MR images, segmentation schemes based on active contours
have used the traditional level set method [8]. Active contours can
also be improved using region information [9,10], salient features
[11], mathematical morphology [12], etc. Traditionally these
schemes use a gradient descent formulation to implement the
non-convex energy minimization which often converges to
undesirable local minima resulting in erroneous segmentations.
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Moreover, traditional level set based implementations are suscep-
tible to slower convergence due to the well-known re-initialization
requirement and discretization errors. Among other techniques for
MRI segmentation, we mention fuzzy C-means based models [13–
16], fuzzy connectedness [17], automatic labeling [18], adaptive
expectation–maximization (EM) [19], Bayesian EM [20], hidden
Markov model EM [21], kernel clustering [22], optimum-path clus-
tering [23], anisotropic diffusion combined with classical snakes
model [24], discriminant analysis [25], and neural networks [26].
We also refer to [27–29] for reviews about segmentation for med-
ical images in general. The area of MRI image segmentation has
seen tremendous research activity and a more detailed review in
this particular field can be found in [30].

Recently quite a lot of interest is being shown in techniques that
can obtain a general convex formulation for active contours
schemes based on energy minimization which can alleviate the
problem of local minima and at the same time reduce computa-
tional complexity [31–37]. In Chan et al. [1] a convex approach
to the two phase segmentation is proposed when the piecewise
constant values labeling disjoint regions are known. The method
relies in replacing the Heaviside functions of level sets (or charac-
teristic functions) by convex and differentiable functions varying in
the interval ½0;1� which remarkably still yields a solution that is
obtained by a simple thresholding procedure. This allows the
non-convex Chan–Vese problem [2] to be solved using standard
convex optimization methods. There have been efforts to extend
the approach of [1] to the more challenging multi-phase problem
[5]. Zach et al. [38] and Lellman et al. [39] proposed convex mini-
mization schemes for the multi-phase segmentation without guar-
anteed global optimum of the original problem. Other approaches
due to [40,41] not only use a convex formulation but also a dual
formulation of the total variation in order to enforce a convex con-
straint on the dual variable providing accurate and better numeri-
cal solutions, but do not aim at computing a global minimizer of
the problem.

In this paper, we consider a globally convex version of the four
phase piecewise constant energy functional motivated from the
seminal work of Chan et al. [1] and based on Bresson et al. [42]
which considered the two phase segmentation model. By deriving
an approximate novel convex functional we change the original
formulation into a binary segmentation problem and utilize a
Chambolle’s dual minimization [43] to solve the relaxed formula-
tion [44]. The proposed global methodology avoids the level set
re-initialization constraint and other ad hoc techniques [45] used
for fixing level set active contour movements throughout the iter-
ations. The proposed approach is used to obtain white matter and
gray matter partitions on brain MRI images as can be seen for
example in Fig. 1. Fig. 1a is a coronal slice from a normal brain
MRI and the binary segmentations capture gray matter/white mat-
ter (Fig. 1b white and black regions respectively), and tissue/back-
ground (Fig. 1c white and black regions respectively). Fig. 1d show
the final segmentation result as contours superimposed on the
Fig. 1. Our fast and automatic four phase image segmentation scheme provides a bet
surrounding white region clearly. (a) Input image, coronal slice from a normal brain MR
relaxed functions u1;u2 at 0:5, (d) Final segmentation result showing the contours s
segmentation result. (For interpretation of the references to color in this figure legend,
input image and the color coded regions in Fig. 1e shows that
our scheme captures the intermediate regions as well.

Our scheme does not involve level sets or re-initialization and
instead relies on the relaxed globally convex formulation of the
Vese and Chan multiphase active contours [5]. Comparison results
on different MRI data sets (real and synthetic) with varying noise
and inhomogeneities show that we can obtain better results than
traditional level set multiphase schemes [5,46,47] and the pri-
mal–dual approach of [48]. Moreover, compared to these tradi-
tional level set based implementations we achieve faster
convergence due to the use of efficient alternating dual minimiza-
tion [49]. The proposed approach is general in the sense that we
can add domain specific knowledge to improve such active contour
schemes further for various tasks [50–55]. The main contribution
of our work is twofold: (1) a fast four phase active contour model
using a relaxed globally convex minimization approximation; (2)
an efficient dual minimization based numerical implementation
for performing segmentation on MRI images.

The rest of the paper is organized as follows. Section 2 intro-
duces the multiphase variational active contour scheme and pro-
vides a globally convex formulation. Section 3 illustrates the
segmentation results on various Brain MRI images including com-
parison of different schemes. Finally, Section 4 concludes the paper
with discussion.

2. Multiphase active contours model

2.1. Finding the global minimum

We first briefly review the classical level set formulation of
Chan and Vese [2] which is based on the Mumford and Shah func-
tional [3] with particular emphasis on the piecewise constant
model. The Mumford–Shah segmentation energy minimization is
given by

min
c0 ;c12R;R�X

MSðR; c0; c1Þ :¼ PerðRÞ þ k0

Z
R
ðI � c0Þ2dx

þ k1

Z
XnR
ðI � c1Þ2dx ð1Þ

where I : X � R2 ! R is the input image, Perð�Þ denotes the perime-
ter and @R separates the regions R and X n R where the two values
c0; c1 are taken. This functional is non-convex even if we fix the con-
stants c0; c1 and thus a difficult optimization problem. Chan and
Vese proposed to use the level set-based algorithm for solving the
functional (1) by representing the boundary @R with the zero level
set of an implicit function which models the image. Let
/ : X � R2 ! R be the level set which defines two regions which
are ‘inside’ fx 2 X : /ðxÞ < 0g and ‘outside’ fx 2 X : /ðxÞ > 0g based
on the zero level set / ¼ 0. Let H is the Heaviside function,

HðzÞ ¼
1 if z P 0;
0 if z < 0:

�
ð2Þ
ter segmentation for brain MRI images, it differentiates the gray matter from the
imagery. (b) and (c) Show final binary segmentations obtained by thresholding the
uperimposed on the input image. (e) Color coded visualization of the obtained

the reader is referred to the web version of this article.)
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Then the Chan and Vese model is given by the following minimiza-
tion problem,

min
ðc;/Þ

Eðc;/Þ ¼
Z

X
dð/Þjr/jdxþ k0

Z
X
ðI � c0Þ2Hð/Þdx

þ k1

Z
X
ðI � c1Þ2ð1� Hð/ÞÞdx; ð3Þ

where d is the Dirac delta function, c ¼ ðc0; c1Þ are the mean
intensity values inside and outside regions respectively. The
Euler–Lagrange equation with gradient descent formulation results
in a nonlinear partial differential equation (PDE),

@/
@t
¼ dð/Þ div r/

jr/j

� �
� k0ðI � c0Þ2 þ k1ðI � c1Þ2

� �
; ð4Þ

along with

c0 ¼
R

X IHð/ÞdxR
X Hð/Þdx

; c1 ¼
R

X Ið1� Hð/ÞÞdxR
Xð1� Hð/ÞÞdx

: ð5Þ

Chan et al. [1] in their work on finding global minimizers for such
segmentation models observed that the following PDE,

@/
@t
¼ div r/

jr/j

� �
� k0ðI � c0Þ þ k1ðI � c1Þ

� �
; ð6Þ

and the PDE in Eq. (4) has the same steady states and the later PDE
(6) can be derived from the following functional,

min
ðc;/Þ

Eðc;/Þ ¼
Z

X
jr/jdxþ

Z
X
½k0ðI � c0Þ2 � k1ðI � c1Þ2�/dx: ð7Þ

The following theorem which is proven in [1] paves the way for
obtaining globally convex version of the two phase Mumford and
Shah functional.

Theorem 1 Theorem 2 in [1]. For any c0; c1 2 R, a global minimizer
of MSð�; c0; c1Þ can be found by carrying out the following
minimization:

min
06u61

Z
X
jrujdxþ

Z
X

k0ðI � c0Þ2 � k1ðI � c1Þ2
h i

uðxÞdx

and then setting R ¼ fx : uðxÞP lg for a.e. l 2 ½0;1�.
2.2. Four phase model

Vese and Chan [5] extended the two-phase formulation to
multi-phase case based on the observation that n level sets can
be used to describe 2n phases or regions. Here we restrict our
description to the four phase model which is used in segmenting
MR images effectively. Let /1;/2 : X � R2 ! R be the two level
sets. H1 ¼ Hð/1Þ;H2 ¼ Hð/2Þ and eH1 ¼ 1� Hð/1Þ; eH2 ¼ 1� Hð/2Þ,
representing four regions. Our goal is to solve a minimization
problem

min
ðc;UÞ

Fðc;UÞ ð8Þ

with

Fðc;UÞ ¼
Z

X
dð/1Þjr/1jdxþ

Z
X

dð/2Þjr/2jdx

þ k11

Z
X
ðI � c11Þ2H1H2dxþ k10

Z
X
ðI � c10Þ2H1

eH2dx

þ k01

Z
X
ðI � c01Þ2 eH1H2dxþ k00

Z
X
ðI � c00Þ2 eH1

eH2dx

where U ¼ ð/1;/2Þ, and the constant mean values
c ¼ ðc11; c10; c01; c00Þ can be derived as
c11 ¼
R

X IH1H2dxR
X H1H2dx

; c10 ¼
R

X IH1
eH2dxR

X H1
eH2dx

; ð9Þ

c01 ¼
R

X IeH1H2dxR
X
eH1H2dx

; c00 ¼
R

X I eH1
eH2dxR

X
eH1
eH2dx

: ð10Þ

Note the zero level sets /i ¼ 0; i ¼ 1;2, represent object boundaries
and the mean values c represent the expected average pixel values
in these objects. Vese and Chan [5] used the corresponding gradient
descent equations to implement the active contours [8]. In the
numerical implementation of the above PDEs, a non-compactly sup-
ported, smooth approximation of the Heaviside function H�ðxÞ, such
that H�ðxÞ ! HðxÞ as �! 0 is utilized. Since the above minimization
(8) is non-convex the time discretized gradient descent PDEs usu-
ally require large iterations and small time steps to convergence
(typically in 100’s of iterations). Moreover, the final segmentation
result may not correspond to the global minimum of the energy
function as the gradient descent scheme can be stuck at a local min-
ima of the corresponding energy functional given in Eq. (8).

We note the corresponding gradient descent equations (time
dependent Euler–Lagrange equations of Eq. (8)) for the level sets
functions /1 and /2,

/1t ¼ dð/1Þ div r/1

jr/1j

� �
� r1ðcÞ

� �
ð11Þ

and

/2t ¼ dð/2Þ div r/2

jr/2j

� �
� r2ðcÞ

� �
ð12Þ

respectively. Here, the image fitting terms are given by,

r1ðcÞ ¼ ðk11ðI � c11Þ2 � k01ðI � c01Þ2ÞH2

þ ðk10ðI � c10Þ2 � k00ðI � c00Þ2ÞeH2

r2ðcÞ ¼ ðk11ðI � c11Þ2 � k10ðI � c10Þ2ÞH1

þ ðk01ðI � c01Þ2 � k00ðI � c00Þ2ÞeH1:

Following, Chan et al. [1], we drop the dirac delta functions (dð�Þ
in (11) and (12)) allowing us to obtain the minimization

min
ðc;UÞ

F ðc;UÞ ð13Þ

with

Fðc;UÞ ¼
Z

X
jr/1jdxþ

Z
X
jr/2jdxþ

Z
X

r1ðcÞ/1dxþ
Z

X
r2ðcÞ/2dx:

Then correspondingly we can derive an energy functional which
does not depend on regularized Heaviside functions. Thus, we can
solve the following globally convex energy minimization problem,

min
u¼ðu1 ;u2Þ2f0;1g2

Gðc;uÞ ð14Þ

with

Gðc;uÞ ¼
Z

X
jru1jdxþ

Z
X
jru2jdxþ k11

Z
X
ðI � c11Þ2u1u2dx

þ k01

Z
X
ðI � c01Þ2ð1� u1Þu2dx

þ k10

Z
X
ðI � c10Þ2u1ð1� u2Þdx

þ k00

Z
X
ðI � c00Þ2ð1� u1Þð1� u2Þdx;

where Heaviside functions are replaced by u ¼ ðu1;u2Þ 2 f0;1g2

which are known as binary partitioning functions. The above modi-
fied minimization problem (14) can further be relaxed to the set
of functions u ¼ ðu1;u2Þ 2 ½0;1�2 in order to solve a convex
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minimization problem. That is, the binary partitioning functions
based energy minimization becomes,

min
u¼ðu1 ;u2Þ2½0;1�2

Gðc;uÞ: ð15Þ

The following theorem provides the guarantee of finding a global
minimizer for the derived functional (14) in terms of the relaxed
version in (15). We follow arguments similar to the work of Chan
et al. [1,36] to prove the following result.

Theorem 2. For any c11; c10; c01; c00 2 R, a global minimizer for
Gðc; �Þ in (14) can be found by carrying out the convex minimization
problem (15).
Proof. See Appendix A. h

The final segmentation is obtained by thresholding the
functions u1 and u2 with any number in the interval ð0;1Þ for
example at 0:5, as shown in Fig. 1b and c. Note that the above
modified minimization model does not involve level sets and thus
can be solved efficiently. Further, we can prove that the above
relaxed minimization problem can be solved in a binary variable
minimization formulation to find a global minimum. The existence
of minimizers of the modified energy G given in Eq. (15) is proved
using the theory of functions of bounded variation (BV) [56].

Theorem 3. For a given input gray scale image I 2 L1ðXÞ, there exists
a minimizer for the functional G in (15) in R4 � BV ½0;1�ðXÞ2.
Proof. See Appendix B h
1 http://www.med.harvard.edu/aanlib/home.html.
2 http://brainweb.bic.mni.mcgill.ca/brainweb/.
3. Experimental results

3.1. Implementation details

The four phase convex minimization problem in (15) is solved
in an alternating fashion for the image variables ðu1;u2Þ:

min
uj2½0;1�

GjðujÞ ¼
Z

X
jrujjdxþ

Z
X

rjðcÞujdx
� �

: ð16Þ

where j ¼ 1;2 and the image region fitting terms are given by,

r1ðcÞ ¼ ðk11ðI � c11Þ2 � k01ðI � c01Þ2Þu2

þ ðk10ðI � c10Þ2 � k00ðI � c00Þ2Þð1� u2Þ;
r2ðcÞ ¼ ðk11ðI � c11Þ2 � k10ðI � c10Þ2Þu1

þ ðk01ðI � c01Þ2 � k00ðI � c00Þ2Þð1� u1Þ:

Following [1], the constrained problem (16) is changed into an
unconstrained minimization problem by solving

min
uj2½0;1�

GjðujÞ ¼
Z

X
jrujjdxþ

Z
X
ðrjðcÞuj þ ajmðujÞÞdx

� �
; ð17Þ

where mðnÞ :¼maxf0;2jn� 1
2 j � 1g is an exact penalty function pro-

vided that aj >
1
2 krjkL1ðXÞ. Based on [42] we use a convex regulariza-

tion of (17) involving the auxiliary variables ðv1;v2Þ and solving the
minimization problem

min
uj ;v j

Z
X
jrujjdxþ 1

2hj
kuj � v jk2

L2ðXÞ þ
Z

X
ðrjðcÞv j þ ajmðv jÞÞdx

� �
;

ð18Þ

with hj chosen to be small [44] allowing us to split (18) into two
minimization sub-problems with respect to uj and v j separately.
To solve the convex optimization with respect uj we use the
Chambolle’s dual formulation [43,42] of the total variation regular-
ization function. In detail:

1. Solve for uj:
min
uj

Z
X
jrujjdxþ 1

2hj
kuj � v jk2

L2ðXÞ

� �
: ð19Þ
The solution is given by
uj ¼ v j � hjdivpj;
where the vector pj ¼ ðpj1
;pj2
Þ satisfies the equation
rðhjdivpj � v jÞ � jrðhjdivpj � v jÞjpj ¼ 0
and it is solved by a fixed point method: p0
j ¼ 0 and
pnþ1
j ¼

pn
j þ dtrðdivðpn

j Þ � v j=hjÞ
1þ dtjrðdivðpn

j Þ � v j=hjÞj
: ð20Þ
We utilize the following stopping condition for the fixed point
iterations,
max
x2X
fpnþ1

j ðxÞ � pn
j ðxÞg > tol ð21Þ
with the tolerance set at tol ¼ 10�2. That is, the criterion for stop-
ping the iteration is to check that the maximum variation between
the dual variables is less than the given tolerance.
2. Solve for the auxiliary variable v j:
min
v j

1
2hj
kuj � v jk2

L2ðXÞ þ
Z

X
ðrjðcÞv j þ ajmðv jÞÞdx

� �
; ð22Þ
for which the solution is given by:
v j ¼min max ujðxÞ � hjrjðcÞ;0
� �

;1
� 	

:

Furthermore, at every few iterations (set at 10 iterations, see Fig. 4
and Section 3.3) the vector c is updated according to the following
equations:
c11 ¼
R

X Iu1u2dxR
X u1u2dx

; c10 ¼
R

X Iu1ð1� u2ÞdxR
X u1ð1� u2Þdx

; ð23Þ

c01 ¼
R

X Ið1� u1Þu2dxR
Xð1� u1Þu2dx

; c00 ¼
R

X Ið1� u1Þð1� u2ÞdxR
Xð1� u1Þð1� u2Þdx

: ð24Þ

The computation of c values are similar to the ones in Vese and
Chan model [5] (see Eqs. (9) and (10)) except that they are now
based on the binary partitioning functions and does not involve
computing regularized Heaviside functions. We refer to [43] for
more details on this particular form of dual minimization and the
motivation for the fixed point method used to derive the solution
for the auxiliary variable in the second step.

3.2. Datasets and parameters

We have used some real MR images from the atlas of normal
structure and blood flow from the Whole Brain Atlas website.1

The images presented here are from T1 MRI imaging modality with
slice thickness of 1 mm. We also utilize the full brain MRI images
available at the BrainWeb database2 which allows us to experiment
with synthetically generated noise (calculated relative to the bright-
est tissue, and denoted by ‘‘n’’) and intensity non-uniformity
(denoted by ‘‘RF’’) to test the robustness of our scheme. BrainWeb
is a simulated brain database which contains a set of realistic MRI
data volumes produced by a powerful MR simulator. This database

http://www.med.harvard.edu/aanlib/home.html
http://brainweb.bic.mni.mcgill.ca/brainweb/
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is widely used by the neuroimaging community to evaluate the
performance of various image analysis methods [57].

The parameters h1 ¼ h2 ¼ 0:001 were fixed for the segmenta-
tion results reported here. We observed that decreasing the h’s
increased the speed of convergence. In order to simplify notations
we use k ¼ k11 ¼ k01 ¼ k10 ¼ k00 and we fix k ¼ 1 in all our experi-
ments reported here. Equal weights (kij’s) are used for the four
regions to be segmented as we do not want to introduce bias for
certain phases and it worked for the brain MRI datasets we used
here. The time step parameter dt ¼ 1=8 for the fixed point itera-
tions (20) (which typically converged in n ¼ 5 iterations) with tol-
erance 10�2 in (21) is used. We note that these optimal parameters
were set for both the brain MRI datasets used here which obtained
best segmentation results (see Section 3.4) and no further tuning is
necessary. Our scheme takes less than 0.2 s (for 100 iterations) on
MATLAB2012a on a Mac laptop with Intel Core i7 CPU 2.3 GHz,
Fig. 2. Our fast four phase image segmentation model provides good segmentation resu
normal brain MR imagery. (b) Final binary segmentation from u1. (c) Final binary segmen
input image, with k ¼ 1. (e) Color visualization of the segmentation result showing four d
(e). (g) Histogram (log-scaled) of the four regions showing the separation clearly. (For inte
web version of this article.)
8 GB RAM CPU. Meanwhile, the average computation time for
related models compared from the literature are in the region of
30 s (for 100 iterations as an upper bound) to converge to the final
segmentation.

3.3. Example segmentations

Fig. 2 shows an example segmentation result of our globally
convex four phase scheme on a normal brain MRI transaxial slice
from the Whole Brain Atlas, see also Fig. 1 where we show a coro-
nal slice from the same atlas. Fig. 2b and c show the two functions
u1;u2 computed using our scheme and thresholded at 0:5 respec-
tively. As can be seen, the binary function from u1, corresponding
to level set /1, contains gray matter (Fig. 2b, u1 > 0:5, shown in
white color) whereas white matter (u1 < 0:5, shown in black color)
is combined with the background. Similarly the binary function
lts by distinguishes different tissue classes. (a) Input image, transaxial slice from a
tation from u2. (d) Segmentation result showing the contours superimposed on the
ifferent regions. (f) Cumulative distribution function (CDF) of the four regions from

rpretation of the references to color in this figure legend, the reader is referred to the



Fig. 3. Robustness of our multiphase scheme with respect to noise (n) and non-uniformity (RF). (a) Color visualization of the segmentation results. (b) CDF of regions. (c) Log-
scaled histograms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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from u2, corresponding to level set /2, contains muscle (Fig. 2(c),
u1 > 0:5, shown in white color) whereas background (u2 < 0:5,
shown in black color) is combined with Cerebrospinal fluid (CSF).
In order to discern the background and CSF, we need to look at
the intersection regions of the functions u1 and u2. For this purpose
we show the result of our four phase model as contours corre-
sponding to the threshold regions fx 2 X : u1ðxÞ ¼ 0:5g, and
fx 2 X : u2ðxÞ ¼ 0:5g, see Fig. 2d where two contours (Cyan,
Magenta) are overlaid on top of the input image. In Fig. 2e we
use four different colors (Blue, Green, Yellow, and Maroon) which
highlight different phases for better visualization of phase separa-
tion and boundary detection of regions. In Fig. 2f and g, we show
cumulative distribution function (CDF) and the histogram of each
of the four regions computed by the proposed method. The
Fig. 4. Iterations versus normalized energy for different number of update iterations f
uniformity (RF) values corresponding to the Fig. 3.
histograms highlight separation of different phases/regions
indicating the superior performance of our splitting based numer-
ical approach.

Fig. 3 shows segmentation results for an MR image (Slice 67
from the BrainWeb synthetic atlas) to show the robustness of our
scheme with respect to various amount of noise and intensity
non-uniformity. We change the amount of noise n from 3% to 5%
and intensity non-uniformity RF from 0 to 40. As can be seen from
the final segmentation results in Fig. 3 (left column), we obtain sta-
ble segments under different RF (Fig. 3 top two rows) and when the
noise increases the segmentation results remain stable (Fig. 3
bottom three rows). Next, Fig. 4 shows the corresponding energy
values (15) against iterations with different number updates for
the constant c ¼ ðc11; c10; c01; c00Þ in Eqs. (23) and (24) in our
or the vector c (23) and (24). We show for different noise (n) and intensity non-
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implementation. As can be seen, updating the constant at every
iteration decreases the energy rapidly initially and keeps it near
zero (but not zero) whereas updating at every 40 iterations
decreases in a piecewise manner but with large drop in energy val-
ues as the increase the iterations. We chose to update the c at every
10 iterations in our alternating minimization implementation (15).
Thus we see that updating the mean values c computed using Eqs.
(23) and (24) at only few iterations does not necessarily increase
the speed of convergence. Further analysis of the implementation
Fig. 5. Our four phase segmentation results for full brain data-sets with representative
present segmentation results for different noise (n) and non-uniformity (RF) values for
intensity inhomegenities.
presented in Section 3.1 and obtaining convergence rates are open
research questions which needs to be explored further.

Fig. 5 shows representative segmentation results for full brain
BrainWeb data-set (transaxial slices are shown) with different
noise (‘‘n’’) and non-uniformity (‘‘RF’’) levels for our scheme. Differ-
ent n and RF are specified in Fig. 5 for each row. This illustrates that
our scheme preserves topological changes as we move through the
image stack as well as our scheme can handle noise and intensity
non-uniformity together effectively.
transaxial slices. First row shows the noise-free brain MRI images. Next subfigures
our scheme. Segmentation results remain stable for increasing values of noise and
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3.4. Comparison results

Fig. 6 shows a comparison result with other related multiphase
active contour methods which we describe briefly and refer the
reader to the corresponding references for more details.

� Ker [46]: This method implements a kernel function which
maps implicitly the original image data into data of a higher
Fig. 6. Comparison with Ker, Mean, Cluster, Mean, Primal–Dual multiphase segmentatio
Cumulative distribution function (CDF) of the four computed regions. (c) Histogram (lo
references to color in this figure legend, the reader is referred to the web version of thi
dimension and uses level set algorithm for multiphase
segmentation.
� Mean [5]: Classical Vese–Chan multiphase piecewise constant

model implemented using the level set algorithm.
� Clust [47]: This method uses curve evolution equations along

with a partition constraint which uses the rule that if a point
leaves a region then it is claimed by a single other region.
� Primal–Dual [48]: This uses a primal–dual minimization method

for the piecewise constant multiphase active contour scheme.
n methods. (a) Color coded visualization of the obtained segmentation result. (b)
g-scaled) of the four regions showing the intersections. (For interpretation of the

s article.)



Fig. 7. Comparison of different schemes for a single brain MRI image (Slice number 79) for different noise (n) and non-uniformity (RF) values. The top subfigure is different
input images. Remaining subfigures contain different segmentation results. From second to sixth row: Ker, Mean, Clust, Primal–dual, and Our approach, respectively.

3 http://cell.missouri.edu/pages/BrainMRISegmentation.
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We utilize the same real MR image given in Fig. 2a for compar-
ing other schemes. In Fig. 6b and c we show CDFs and histograms
computed for each of the computed phases respectively. Compared
with the histograms shown in Fig. 2f and g for our scheme, we see
that the proposed model provides better separation of regions. The
histograms for the other schemes in Fig. 6c show nontrivial inter-
sections, highlighting the drawback in using level set based imple-
mentations. Moreover, the noise remains as speckles in the
segmented regions whereas our model handles it efficiently.

Finally, in Fig. 7 we show different segmentation results for a
particular image (slice number 79) taken across all noise and inho-
mogeneity levels for different schemes. The results indicate that
Ker and Mean methods can lead to poor separation of different
regions whereas noise can affect the result of Clust and Primal–Dual
schemes. Meanwhile, our approach performs well and handles
higher non-uniformity without degrading the final segmentation
results. Further data-sets and extensive comparison results of all
the schemes for full brain stacks are available online.3

We further use the following quantitative error metrics to com-
pare the schemes with gold standard ground truth segmentations

http://cell.missouri.edu/pages/BrainMRISegmentation
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on BrainWeb synthetic atlas with different noise and intensity
non-uniformity values. For more details about objective evaluation
of image segmentation algorithms and for precise definitions of
these metrics we refer to [58].

� DICE:
The Dice coefficient [59] is a popular error metric and it is used
to compare ground truth segmentation with those obtained
with automatic multiphase segmentation schemes. By defini-
tion, for two binary segmentations A and B, the Dice coefficient
is computed as:
Table 1
Average
segmen

n

3

3

5

5

5

Table 2
Average

n

3

3

5

5

5

DðA;BÞ ¼ 2 A \ Bj j
Aj j þ Bj j : ð25Þ
Here the binary segmentation is computed automatically, using the
segmentation curves and by thresholding regions obtained by all
algorithms. The notation Aj j denotes the number of pixels in the
set A. Note that, a D value of 1 indicates perfect agreement. In par-
ticular, higher numbers indicate that the results of that particular
scheme’s result match the gold standard better than results that
produce lower Dice coefficients.
Dice coefficients values for different schemes in four different phases (region
tation. Best results are indicated by boldface.

RF Regions Ker Mean

0 D1 0.305670 0.824283
D2 0.224586 0.581326
D3 0.131252 0.363182
D4 0.565510 0.840712

20 D1 0.306836 0.767452
D2 0.223917 0.534288
D3 0.130171 0.303436
D4 0.563268 0.823805

0 D1 0.305627 0.788663
D2 0.226171 0.539260
D3 0.126738 0.299720
D4 0.544178 0.807202

20 D1 0.309830 0.746360
D2 0.225578 0.510120
D3 0.132034 0.253848
D4 0.539861 0.780266

40 D1 0.310085 0.715360
D2 0.226430 0.478908
D3 0.130849 0.221841
D4 0.542354 0.766757

Rand Index (RI), Global Consistency Error (GCE) and Variation of Information (VI)

RF Error metrics Ker Mean

0 RI 0.527025 0.849013
GCE 0.332322 0.223942
VI 2.483764 1.177137

20 RI 0.525251 0.833570
GCE 0.329012 0.236016
VI 2.477927 1.255048

0 RI 0.523815 0.825506
GCE 0.333999 0.250001
VI 2.507981 1.326232

20 RI 0.522536 0.813937
GCE 0.330010 0.252157
VI 2.495524 1.375133

40 RI 0.520192 0.805794
GCE 0.326658 0.256492
VI 2.489061 1.423080
� RI:
Rand index: A metric based on a classical nonparametric test
and is computed by counting pairs of pixels that have compat-
ible label relationships in the two segmentations to be com-
pared. Values closer to 1 indicate better segmentation result.
� GCE:

Global consistency error: A metric which computes the degree of
overlap of the cluster associated with each pixel in one segmen-
tation and its ÒclosestÓ approximation in the other segmenta-
tion. Values closer to 0 indicate better segmentation results.
� VI:

Variation of information: A metric related to the conditional
entropies between the class label distribution of the segmenta-
tions. This computes a measure of information content in each
of the segmentations and how much information one segmen-
tation gives about the other. Lower values indicate better
segmentation results.

Note that all these metrics are for comparing two segmenta-
tions, one of which is assumed to be the available ground truth.
Table 1 shows the comparison of average Dice values (for a total
s). Values near 1 indicate the closeness of the segmentation to the ground truth

Clust Primal–Dual Our

0.886665 0.698128 0.944007
0.419365 0.700223 0.915818
0.110626 0.718244 0.870375
0.693652 0.955584 0.965933

0.873386 0.692621 0.931111
0.432176 0.695534 0.907063
0.110716 0.718225 0.873175
0.645526 0.953754 0.967594

0.877971 0.688774 0.912402
0.311053 0.680036 0.879323
0.100588 0.688052 0.829607
0.669333 0.948687 0.954868

0.866684 0.708890 0.903028
0.318350 0.685553 0.870886
0.111433 0.683057 0.824065
0.613947 0.944511 0.953657

0.825330 0.685356 0.872111
0.286386 0.678544 0.844355
0.127278 0.670710 0.806790
0.586870 0.543010 0.951143

for different schemes. Best results are indicated by boldface.

Clust Primal–Dual Our

0.672026 0.895372 0.946341
0.158767 0.173467 0.085668
1.490298 0.992642 0.569099

0.659371 0.887008 0.941475
0.171285 0.189292 0.096797
1.564992 1.065011 0.620833

0.648725 0.884315 0.921506
0.154166 0.194308 0.135605
1.563033 1.087131 0.828043

0.629603 0.877183 0.917244
0.166120 0.209219 0.142290
1.642941 1.148695 0.858660

0.604564 0.865636 0.905678
0.176804 0.231084 0.163501
1.737919 1.240130 0.950309
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of 181 images) of different models for different noise and intensity
inhomogenieties taken from BrainWeb database. As can be seen,
our scheme performs better in terms of the Dice coefficient com-
pared with other related approaches for all noise levels in all the
four regions. Similarly in Table 2 we see that the average value
of metrics RI, GCE and VI for different schemes against our model
shows that the proposed globally convex multiphase scheme per-
forms well overall.

4. Conclusion and discussion

We considered a fast globally convex four phase active contour
scheme for MRI image segmentation inspired by Chan et al. [1]
approach and provide a well-posed convex energy minimization
which can be used to determine piecewise constant segmentations
without level sets. By using a dual minimization-based implemen-
tation our approach provides better phase differentiation than
other schemes. Experimental results on brain MRI images indicate
the proposed approach provides better results compared with
other active contour based multiphase segmentation schemes.

The four phase method we studied is found to provide better
phase separation which is relevant in biomedical imagery. Experi-
mental results indicate that our method performs better than other
multiphase schemes which are applied MR image segmentation in
terms of different error metrics. We obtain better differentiation of
gray, white matters and the background in an unsupervised man-
ner. Further, finer differentiation of other tissue classes such as CSF,
fat, muscle, blood vessels, connective tissue (region around fat),
dura matter and bone marrow will require more features and
adaptive choice of parameters used in our implementation. This
requires prior anatomical knowledge about the tissues which then
can be used to pick our parameters for obtaining finer segmenta-
tions. The methodology presented here is general and currently
we are developing the method to work for different imaging
modalities (for example natural images from the Berkeley segmen-
tation dataset [55], and biomedical images [54]). Our preliminary
analysis suggest that we need to incorporate further features
(color, texture, motion) before it can be applied for such images.

The main theoretical results we proved assume that the mean
values are known a priori. Relaxing this assumption and proving
the convergence of dual minimization based alternating iterative
scheme are open though the numerical results indicate our
approach works well for MR image segmentation. We also remark
that the L2-norm can be replaced by L1-norm as a fidelity measures
being particularly suitable for handling non-Gaussian additive
noise and it will not erode geometric structures of the image
during the segmentation allowing to preserve the contrast
[60,42,61]. Currently we are developing a completely convex
formulation of the original multiphase Vese and Chan model to
guarantee the existence of a global solution when the constant
values for each phase are not known a prior as well. Further, we
plan to extend the multiphase model to perform surface segmenta-
tions from 3D MRI images similar to [9] as well as a method to
extract intensity non-uniformity patterns coupled with segmenta-
tions [17].

Appendix A. Equivalence between (14) and (15) minimizations
Proof (Proof of Theorem 2). We use the standard notation for
functions of bounded variation [62]. Since u 2 ½0;1�2, it follows
from the standard total variation based Coarea Formula (see
Theorem 4 below),Z

X
jru1jdx ¼

Z 1

0

Z 1

0
Per fx 2 X : u1ðxÞ > f1gð Þdf1df2;
andZ
X
jru2jdx ¼

Z 1

0

Z 1

0
Per fx 2 X : u2ðxÞ > f2gð Þdf1df2:

For the image fitting term,Z
X
ðu� c11Þ2u1u2dx¼

Z
X
ðu� c11Þ2

Y2

i¼1

Z 1

0
1fx2X:ui>figdfi

� �
dx

¼
Z 1

0

Z 1

0

Z
X
ðu�c11Þ21fx2X:u1>f1g1fx2X:u2>f2gdxdf1df2:

Further similar computations yield,Z
X
ðu� c01Þ2ð1� u1Þu2dx ¼

Z 1

0

Z 1

0

Z
X
ðu� c01Þ2

ð1� 1fx2X:u1>f1gÞ1fx2X:u2>f2gdxdf1df2;

Z
X
ðu� c10Þ2u1ð1� u2Þdx ¼

Z 1

0

Z 1

0

Z
X
ðu� c10Þ21fx2X:u1>f1g

ð1� 1fx2X:u2>f2gÞdxdf1df2;

Z
X
ðu� c00Þ2ð1� u1Þð1� u2Þdx ¼

Z 1

0

Z 1

0

Z
X
ðu� c00Þ2

ð1� 1fx2X:u1>f1gÞð1� 1fx2X:u2>f2gÞdxdf1df2:

Defining 1u :¼ ð1fx2X:u1>f1g; 1fx2X:u2>f2gÞ, it follows that

Gðc;uÞ ¼
Z 1

0

Z 1

0
Gðc; 1uÞdf1df2 ¼

Z 1

0

Z 1

0
Fðc;u� fÞdf1df2;

for a.e. f ¼ ðf1; f2Þ 2 ½0;1�2. Thus, it follows from the above equations
that if u is a minimizer of the convex relaxed problem (15), then for
a.e. f 2 ½0;1�2, the function w1 ¼ 1u is a minimizer of the problem
(14). h
Remark 1. Note also that w2 ¼ u� f is a solution of the original
Vese and Chan minimization problem (8). This shows that the
relaxed convex minimization problem is equivalent to the original
Vese and Chan piecewise constant multiphase formulation (8), we
refer to Chan et al. [1] for more details.

We note that the Theorem 2 assumes the constants
c ¼ ðc11; c10; c01; c00Þ to be known to obtain a global minimizer of
the energy minimization problem (15). In the image segmentation
problem, we assume that these constants are unknown and they
are part of the minimization problem considered in our implemen-
tation (see Section 3.1, we update the constants c in Eqs. (23) and
(24) at every few iterations). Currently there are no results which
can guarantee that the alternating minimization scheme for both
the image functions and constants, that is for ðu1;u2; cÞ, converges
to the global minimum of (15). Nevertheless we observed numer-
ically that the proposed implementation decrease the energy value
rapidly, see Fig. 4.

Appendix B. Existence results

In order to prove the existence of a solution to our problem in
(15) we need to recall a definition and some properties of functions
of bounded variation [62,63].

Definition 1. Let X � Rn be an open set and u 2 L1ðXÞ. The total
variation of u in X is defined by

Z
X
jrujdx :¼ sup

/2U

Z
X

udiv/dx
� �

;

where U ¼ / 2 C1
0ðX;RnÞ : j/ðxÞj 6 1 in X

n o
.
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Definition 2. u 2 L1ðXÞ is a function of bounded variation ifR
X jrujdx is finite. BVðXÞ is the space of all functions in L1ðXÞ with

bounded variation. The BVðXÞ space is endowed with the norm
kukBVðXÞ ¼ kukL1ðXÞ þ

R
X jrujdx, which makes it a Banach space.

The set of functions u 2 BVðXÞ taking values in ½0;1� is denoted
by BV ½0;1�ðXÞ.
Definition 3. A Borel subset E # X is called a set of finite perimeter
in X, when the associated characteristic function, 1E, belongs to
BVðXÞ. The perimeter of E in X is defined as PerðEÞ :¼

R
X jr1Ejdx.
Theorem 4 (Coarea Formula). If u 2 BVðXÞ, then for a.e. t 2 R, the
level set Et :¼ fx 2 X : uðxÞ > tg has finite perimeter, i.e., the charac-
teristic function 1Et 2 BVðXÞ. Then, one hasZ

X
jrujdx ¼

Z 1

�1
Per Etð Þdt:
Theorem 5 (Compactness). Let X be a 1-regular open bounded
subset of Rn. Then, for all p such that 1 6 p < n

n�1, the embedding
BVðXÞ � LpðXÞ is compact.
Theorem 6 (Lower Semicontinuity). Let ðukÞk2N be a sequence in
BVðXÞ strongly converging to some u 2 L1ðXÞ and satisfying
supk2N

R
X jrukjdx < þ1. Then, u 2 BVðXÞ;

R
X jrujdx 6 lim infk!þ1R

X jrukjdx, and uk weakly converges to u in BVðXÞ.

We are now ready to prove our main result.

Proof of Theorem 3. Let m :¼ inf Gðc;uÞ and ðck;ukÞ
� 	1

k¼1

# R4 � BV ½0;1�ðXÞ2 be a minimizer sequence for the energy G, i.e.,

Gðck;ukÞ !k!1 m:

Since fukg1k¼1 is bounded in BV ½0;1�ðXÞ2, there is a subsequence also

denoted by fukg1k¼1, strongly convergent to an element u� 2 L1ðXÞ2

(Theorem 5). Furthermore, u� 2 L1
½0;1�ðXÞ

2. Therefore, it follows that

u� 2 BV ½0;1�ðXÞ2 andZ
X
jDu�i jdx 6 lim inf

k!1

Z
X
jDuk

i jdx ðwith i ¼ 1;2Þ ðB:1Þ

(Theorem 6). Now, considering G as a function of c, its minimi-
zation brings the following two equations,

ck
11 ¼

R
X Iuk

1uk
2dxR

X uk
1uk

2dx
; ck

10 ¼
R

X Iuk
1 1� uk

2

� �
dxR

X uk
1 1� uk

2

� �
dx

ck
01 ¼

R
X Ið1� uk

1Þuk
2dxR

Xð1� uk
1Þuk

2dx
; ck

00 ¼
R

X Ið1� uk
1Þð1� uk

2ÞdxR
Xð1� uk

1Þð1� uk
2Þdx

:

Since I 2 L1ðXÞ, it follows fckg1k¼1 is uniformly bounded. Hence,
there is a subsequence also denoted by fckg1k¼1 � R2n and a constant
vector c� 2 R2n such that

ck !k!1 c�:

Then, from Fatou’s lemma we get for the suitable sequence
fðck;ukÞg1k¼1:

Gðc�;u�Þ 6 lim inf
k!1

Gðck;ukÞ ¼ m;

i.e., ðc�;u�Þ is a minimizer of the functional G. h

Note that the c ¼ ðc11; c10; c01; c00Þ values given in the above the-
orem are computed in the numerical scheme based on the dual
minimization formulation of Chambolle [43] and extends [42]
which is described in detail in Section 3.1.
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