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a b s t r a c t 

Mobile biometrics technologies are nowadays the new frontier for secure use of data and services, and 

are considered particularly important due to the massive use of handheld devices in the entire world. 

Among the biometric traits with potential to be used in mobile settings, the iris/ocular region is a natural 

candidate, even considering that further advances in the technology are required to meet the operational 

requirements of such ambitious environments. Aiming at promoting these advances, we organized the 

Mobile Iris Challenge Evaluation (MICHE)-I contest. This paper presents a comparison of the performance 

of the participant methods by various Figures of Merit (FoMs). A particular attention is devoted to the 

identification of the image covariates that are likely to cause a decrease in the performance levels of the 

compared algorithms. Among these factors, interoperability among different devices plays an important 

role. The methods (or parts of them) implemented by the analyzed approaches are classified into seg- 

mentation (S), which was the main target of MICHE-I, and recognition (R). The paper reports both the 

results observed for either S or R, and also for different recombinations (S+R) of such methods. Last but 

not least, we also present the results obtained by multi-classifier strategies. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Typically, benchmark datasets follow the progress of the re-

search they help to assess. When a new research line is started,

the first attempts investigate and evaluate possible solutions ad-

dressing the basic/simplest formulation of problems. Once accept-

able solutions are achieved in each round, new harder issues are

typically tackled. Extended and more challenging datasets are col-

lected when the need arises to evaluate new emerging potential

solutions. The iris recognition domain follows this general trend.

The first version of CASIA iris dataset (CASIA-IrisV1) 1 was col-

lected by avoiding most possible distortions that possibly hinder

recognition of the iris in an image. This was not only obtained

by an ideal acquisitions of the subjects [16] ), but also by avoid-

ing/bypassing segmentation difficulties, through the substitution of

the pupil with a black circle. These conditions make it poorly us-

able at present, and tests carried out using such benchmark are

scarcely significant. Notwithstanding this, the great value of this

dataset is that it was among the first publicly available ones for

iris, allowing a fair comparison of the first research results on the
∗ Principal corresponding author. 

E-mail addresses: demarsico@di.uniroma1.it (M. De Marsico), mnappi@unisa.it 
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roblem. Later, increasingly difficult datasets have been offered to

he research community to spur and validate research on harder

roblems. The Mobile Iris Challenge Evaluation (MICHE)-I [7] is

mong the most recent competitions in the iris recognition do-

ain, supported by the official dataset MICHE-I [8] . The aim of

he competition has been to evaluate state-of-the-art algorithms to

egment and encode/match iris data, captured by mobile devices

n uncontrolled settings. As these devices have become massively

sed around the entire world, their potential for biometric recogni-

ion applications has been considered one of the major challenges

or the research community. Major problems to address are due to

he heterogeneity of the environments where these devices work,

he different features of sensors, and the possible lack of technical

xperience/awareness of users, that often produce samples of un-

redictable quality. Often mentioned with the term in-the-wild , the

esearch in unconstrained biometric scenarios is gaining increasing

ttention as discusses in [25,26] for long-range iris recognition or

n [28] and [29] where the typical challenges of segmentation in

oisy acquisitions are addressed. 

The classical solutions for iris recognition have been devised to

ork on data acquired in near-infrared (NIR) wavelengths. This re-

uces most data noise, by reducing the potential negative effect

f reflections due to the cornea. Even though these algorithms are

emarkably effective in noise-free data, their performance is se-

iously affected by the image variation factors typical in images

https://doi.org/10.1016/j.patcog.2017.08.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.08.028&domain=pdf
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cquired in visible wavelength (VW), and in particular in mobile

ettings. There is an obvious need of developing new recognition

olutions, particularly suitable to handle data acquired from hand-

eld devices. Notwithstanding the advances of technology and the

rowing availability of computing and communication resources,

he ability to transfer the overall biometric processing on a mo-

ile device still calls for faster as well as lighter procedures, and

or a smarter storage strategy. Therefore, present techniques to

arry out detection, segmentation and coding, as well as match-

ng steps, must be adapted to the mobile setting. The Mobile Iris

hallenge Evaluation (MICHE)-I has intended to be an arena to

ompare state-of-the-art approaches to the different mobile iris

rocessing steps. In order to provide a common ground for the

omparison of proposed methods, the participants could exploit a

ew iris biometric dataset, namely MICHE-I, 2 captured under un-

ontrolled settings using mobile devices. The next sections will

rst present the dataset and sketch the main features of the com-

ared methods. Afterwards some relevant aspects of the achieved

esults will be discussed, with a special focus on the image fea-

ures/distortions that can mostly positively/negatively affect recog-

ition performance, and on interoperability issues raising from the

se of different devices i n enrollment vs. testing operations. A

oteworthy aspect of the analysis carried out, has been to decom-

ose methods proposing both a segmentation and a recognition

echnique, and to assemble/reassemble the obtained modules in

rder to investigate the best combinations. Last but not least, the

aper also presents the results of possible multi-classifier strate-

ies, to complement the strengths of different approaches. The

ested fusion rules include both a very simple combination of re-

ults at score level (Simple Sum) and a more advanced technique.

he latter entails to assign a different weight to the contributions

y the different methods exploited. The Matcher Weighting Fusion

xploits Equal Error Rate (EER) achieved by the recognition meth-

ds in a pre-testing step, and assigns a higher weight to those

ethods that achieve a lower EER. The weights are therefore in-

ersely proportional to the errors of the methods considered. 

The different iris/non iris segmentation strategies, have been

valuated by the classical performance measures for binary classi-

cation: Accuracy, Precision, Sensitivity, Specificity, Pratt, F1_Score,

and Index, Global Consistency Error, E1_score, Pearson Correla-

ion Coefficient. Final recognition, when included in the participant

ethods, was carried out in verification mode (1:1 matching). Each

robe was compared with all the templates of a same individual

n the gallery, either with the same identity of the probe (genuine

ttempt) or with a different identity (impostor attempt), and the

est result was used to determine the system response. The per-

ormance measures used for this step have been Decidability in-

ex, Area Under Curve (AUC) and Equal Error Rate (EER), and also

eceiver Operator Characteristic (ROC) curves. Details for all mea-

ures are given in Section 4.1 and Section 5. It is worth underlining

hat MICHE-I was especially focused on iris segmentation. For this

eason more metrics are used to measure performance in this op-

ration. Also the results of proposals addressing iris recognition are

iscussed with a special consideration for the segmentation meth-

ds allowing the best separation of eye regions, and therefore a

ore reliable feature extraction and matching. 

The paper proceeds as follows: Section 2 introduces MICHE-

 dataset, that was used both for the challenge and for the fur-

her tests presented here. Section 3 summarizes the methods that

articipated in MICHE-I challenge. Section 4 presents results re-

ated to segmentation, and further analyses both the statistical

ignificance of the different performance (PRATT index) of each
2 The dataset is available on demand at http://www.biplab.unisa.it/MICHE/ 

atabase/) 

e  

o  

a  

i  
ethod between INDOOR and OUTDOOR conditions, and the char-

cteristics of best and worst iris images in terms of achieved seg-

entation accuracy. Section 5 is devoted to recognition results,

ostly in terms of re-combination of the different segmentation

nd recognition methods, and presents some deeper observations

n the key aspects that can affect a good or bad recognition re-

ult. Section 5 also sketches time complexity of the different meth-

ds. Section 6 presents the tests carried out on the multibiometric

ombination, and the fusion of results obtained by combining dif-

erent subsets of the proposed methods. Finally Section 7 draws

ome conclusions. 

. The MICHE-I database 

The aim of the MICHE-I challenge was to assess in a formal and

omprehensive way the levels of performance that can be realisti-

ally expected from a solution for iris biometrics working on hand-

eld devices. This work provides a deeper insight into its results. 

The iris is undoubtedly one of the most popular biometric

raits, together with fingerprints and face. It is not unfailing since

t can change over time [27] , but it is also one of the most reliable

iometric trait for a robust recognition. Iris recognition systems

ave been in fact successfully deployed in various security appli-

ations (e.g., airport check and refugee control). However, most of

hese systems still require that subjects stand close to the capture

evice (about 1 m or less) and firmly look towards it for a period

f about 3 s. 

The Chinese Academy of Science collected and made available

he first public iris image dataset, named CASIA-Iris, that has been

pdated from CASIA-IrisV1 to CASIA-IrisV4 since 2002. Its im-

ges are collected under near-infrared (NIR) illumination or syn-

hesized. For these reasons, they cannot be reliably used for as-

essing methods entailing acquisition on mobile devices. In fact,

xcept for a limited percentage of advanced models, these are

till mostly equipped with a common RBG camera. The first iris

iometric competitions have relied on NIR images as well, that

et the mentioned constraints relating to controlled acquisition.

mong the most well-known, the Iris Challenge Evaluation (ICE)

 http://www.iris.nist.gov/ICE/ , [17] ) is worth highlighting, even

hough the used images share most of the CASIA features and do

ot represent the type of data expected in mobile environments.

roença and Alexandre [20] have rather tackled the problem of

oisy iris recognition. The Noisy Iris Challenge Evaluation (NICE

) they organized exploited images captured in less constrained

maging environments, to evaluate how noise affects iris segmen-

ation ( http://www.nice1.di.ubi.pt ). To this aim, the proposed iris

ataset, namely UBIRIS.v2 [19] , contains data captured in visible

avelength (VW), at-a-distance (between 4 and 8 m), and on the

ove. The results observed confirmed the major impact of uncon-

rolled conditions on recognition performance. Recognition of VW

ris images captured at-a-distance and on the move with less con-

rolled protocols was also the target of the further NICE II contest

21] . Though UBIRIS datasets were captured in visible light and un-

ontrolled conditions, acquisition was carried out by cameras with

uch higher resolution than of the images acquired by mobile de-

ices. 

In terms of wavelength, note that VW data might contain more

inutiae than NIR data (particularly in case of light pigmented

rises), but are also much more seriously affected by noisy arti-

acts (specular reflections) [11] . This raises an apparent contradic-

ion, since more detail does not necessarily means an advantage

ffered by VW images vs IR ones. On one hand, Hollingsworth

t al. [11] noted that humans can recognize more easily images

f the periocular region acquired in visible light, since these im-

ges show melanin-related differences that do not appear in near-

nfrared images. On the other hand, however, when tackling iris

http://www.biplab.unisa.it/MICHE/database/)
http://www.iris.nist.gov/ICE/
http://www.nice1.di.ubi.pt
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recognition, the situation is often reversed. The more clean and

easily distinguishable collection of features in NIR images makes

the iris recognition problem in NIR generally more feasible than

in VW. In addition, performance on NIR images is almost indepen-

dent of the iris color and pigmentation, while on VW images even

a dark pigmentation represents a harder condition compared to the

lighter iris colors. Notwithstanding this, some specific patterns are

still better detectable in VW. Hosseini et al. [12] discussed how

pigment melanin provides a rich feature source in VW, which is

unavailable in NIR imaging. This is because, compared to VL [Visi-

ble Light], NIR eliminates most of the related information in pig-

ment melanin that scatters in the iris. This is due to the chro-

mophore of the human iris, which has two distinct heterogeneous

macromolecules called brown-black Eumelanin and yellow-reddish

Pheomelanin. Studying the excitation-emission quantum yields of

eumelanin shows that exciting this macromolecule under NIR fir-

ing leads to almost no emission of quantum yields where the re-

lated chromophors attenuate in NIR imaging [12] . Comparing the

advantages of VW/NIR wavelengths, the literature clearly supports

the NIR setting, which has induced all commercial iris recognition

systems to rely on it. As mobile biometrics are becoming more

popular, also NIR attachments become available for mobile devices

to implement iris recognition. However, in everyday devices, both

NIR sensors and NIR attachments are still quite rare. As mentioned

above, the aim of MICHE-I competition, was to assess which level

of performance can be achieved without special equipment. 

When using a mobile device, it is generally assumed that the

subject to be recognized holds and controls the capturing device

by himself, though being not necessarily habituated to the data

acquisition protocol, and lacking the technical experience to evalu-

ate the capture quality. Note that a more controlled capture would

substantially increase the average quality of the data acquired,

but would also reduce the challenging levels of the contest, that

aims at reproducing real-life as faithfully as possible. Two oppo-

site considerations hold for MICHE-I data: from one side, captur-

ing results might be enhanced by the usually short distance (the

length of a human arm, at most), and by the fact that the user

tends to assume a frontal pose quite naturally; from the oppo-

site side, the quality of the acquired images suffers from a num-

ber of factors: the embedded camera has possibly low resolu-

tion, and motion blur, incorrect framing and illumination distor-

tions are also highly probable. These issues call for robust detec-

tion/segmentation and encoding procedures. It is worth noting that

the accuracy of the latter is heavily affected by the quality of the

former. In this context, the MICHE-I dataset represents the start-

ing core of a wider benchmark to be collected thanks to a crowd-

sourcing approach. This should better allow unbiased assessment

of cross-demographic robustness, as well as the interoperability of

recognition procedures. In particular, as images are acquired by

various mobile devices, the current dataset allows to perceive the

cross-sensor recognition effectiveness. 

In summary, the key features of MICHE-I dataset are a sufficient

population of users, the use of different mobile devices for the col-

lection, the realistic simulation of the acquisition process including

different sources of noise, and several acquisition sessions sepa-

rated in time. A full metadata annotation completes the dataset. 

Actually, other mobile datasets published later than MICHE-I in-

clude a higher number of subjects. In MICHE-I challenge, the main

aim was to investigate the factors negatively affecting iris recogni-

tion when capture is carried out using mobile devices. In this con-

text, the relatively lower number of subjects is compensated for by

the total number of more than 30 0 0 images which are acquired by

different mobile devices, in different conditions. This allows match-

ing samples of the same subject acquired in realistic settings, and

to estimate the possible performance degradation. It is worth un-

derlining that cross-device matching is often neglected in litera-
ure. Moreover, the number is sufficient to carry out a thorough

omparison of different combinations of segmentation/recognition

pproaches. 

The subjects involved in data collection were asked to behave

s they would do by using a real system, e.g., subjects wearing

yeglasses could either choose to remove or keep them. They had

o take self-images of their iris, by holding the mobile device

y themselves, and without any cue about the correctness of iris

raming and possible blur. A minimum of four shots for each cam-

ra was requested (two out of three devices were equipped with

wo cameras with different resolutions) and acquisition mode (in-

oor, outdoor). Indoor acquisition was affected by various sources

f artificial light, sometimes combined with natural light ones.

utdoor acquisition was carried out using natural light only. For

ach subject only one of the two irises was acquired. Three kinds

f smartphones/tablets were used for data collection, with Android

r Apple iOS operating systems: 

• Galaxy Samsung IV (GS4): Google Android; CMOS poste-

rior camera, 13 Megapixels (72 dpi); CMOS anterior camera,

2 Megapixels (72 dpi); 
• iPhone5 (IP5): Apple iOS; iSight posterior camera, 8 Megapix-

els (72 dpi); anterior FaceTime HD Camera, 1.2 Megapixels (72

dpi); 
• Galaxy Tablet II (GT2): Google Android; no posterior camera;

0.3 Megapixels anterior camera. 

Images have one of three different resolutions (1, 536 × 2,

48 pixels for iPhone5, 2322 × 4128 for Galaxy S4, and 640 × 480

or the tablet). The sources of noise in the MICHE-I dataset in-

lude: (a) reflections caused by artificial light sources, natural light

ources, people or objects in the scene during the acquisition; (b)

ocus; (c) blur, either due to an involuntary movement of the hand

olding the device, or due to an involuntary movement of the head

r of the eye during acquisition; (d) occlusions, due to eyelids, eye-

lasses, eyelashes, hair, shadows; (e) device-specific artifacts, due

o the low resolution and/or to the specific noise of the device;

f) off-axis gaze; (g) variable illumination; and (h) different color

ominants. It is possible to further observe that the lack of pre-

ise framing and fixed distance in the capture (both well centered

yes and half faces are present in dataset images), result in vari-

ble sizes of the region useful for recognition. This is typical of

obile captures performed by the users, which are usually nei-

her too close nor at arm-length. This introduces further difficul-

ies, since eye localization must be performed in a pre-processing

tep. In some cases, the resulting size of the iris region is too small,

hile in other cases it is also possible to exploit the possibili-

ies offered by an extended periocular region. MICHE-I is a multi-

ession dataset, and the time elapsed between the first and second

cquisition of a subject varies from a minimum of 2 months to a

aximum of 9. At present, MICHE-I contains images from 75 dif-

erent subjects, with 1297 images from GS4, 1262 images from IP5,

nd 632 images from GT2. 

The Extensible Markup Language (XML) meta-data includes the

ollowing tags: 

• filename : the name of the annotated image; it is composed so

to code a certain amount of information in order to quickly find

the desired image(s); 
• img _ type : the trait captured in the of image, since face images

will be included soon in the dataset; 
• iris : which iris was acquired (right, left or both); 
• distance _ from _ the _ device : distance of the user from the acqui-

sition camera, measured to provide a further information for

assessment ; 
• session _ number : the number of the acquisition session; 
• image _ number : image ordinal number; 
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• user : id number, age, gender and ethnicity of the subject; 
• device : all information about the capture device: type, name,

camera position (front or rear), resolution and dpi; 
• condition : information about capture conditions: location, illu-

mination; 
• author : the name of the laboratory/institution who made that

acquisition. 

The XML file structure allows a quick and reliable retrieval of

ny image as a function of any one of the above parameters. 

. Methods participating in the MICHE-I challenge 

As discussed above, the MICHE-I dataset contains images ac-

uired in unconstrained settings. Therefore, their average quality is

oor, so that the main goal of the participating approaches was to

ttempt to address such data degradation. To this aim, they mostly

sed: 1) the periocular region as an extra source of information; 2)

olor compensation strategies to attenuate the typical difference of

ensor features across different devices; and 3) multiple strategies

o avoid relying exclusively on a single family of features/methods,

herefore reducing the sensitivity to any particular data covariate. 

The method proposed by Santos et al. [24] uses both the infor-

ation from the iris and the periocular region, encoded/matched

n a non-holistic way. The idea is to start by segmenting the iris

ing, which is also used to define the periocular region-of-interest

ROI). Next, a family of texture descriptors is used to encode the

iscriminating information in the iris ring and in the regions sur-

ounding the cornea (i.e., eyelids, eyelashes, skin and eyebrows).

n more detail, as for periocular region, two types of analysis

re applied to the identified ROI: a distribution-based analysis of

atches over a grid, and a global analysis of the whole region. The

istribution-based analysis involves the computation of local bi-

ary patterns (LBP) and histogram of oriented gradients (HOG), and

niform LBP (ULBP). Each descriptor is computed sequentially for

ach patch and quantized into histograms. As for global analysis,

eature extraction techniques are applied to the whole ROI and the

escriptors applied are scale-invariant feature transform (SIFT) and

IST (a set of five scene descriptors [15] ). As for iris, information

s encoded based on the approach described by Daugman [5] Fi-

ally, scores from all the adopted descriptors are fused by a non-

inear supervised neural network. Furthermore, the method entails

he use of device-specific calibration techniques, that compensate

or the different color rendering characterizing each experimental

etup. Looking at the results obtained for the contest, it seems that

lso the latter is one of the keys for such good performance, par-

icularly in the cross-sensor set of tests. 

Barra et al. [2] design a complete approach to iris recogni-

ion, including segmentation and recognition. The segmentation

ethod, named IS_IS, was originally proposed in [6] , and it is mod-

fied to run on mobile devices. Segmentation relies on the ho-

ogeneity of gray scale histograms of image patches to find the

upil boundary, and on dark-to-light transitions to find the sclera

oundary, in a scheme that resembles the well-known Daugman’s

ntegro-differential operator. Feature encoding relies on spatial his-

ograms (spatiograms) [3] , that can be considered as higher order

istograms, that also record the information relating to the spatial

omain. They are matched by correlation-based techniques. 

The approach by Abate et al. [1] relies on the observation that

he features of images from the ocular region acquired by mobile

evices are evidently different from the type of data that is gen-

rally obtained in more constrained setups. The authors propose

n algorithm based on the watershed transform for iris segmenta-

ion [30] , namely watershed Based IRis Detection (BIRD). The idea

s to start by obtaining the gradients in a colored, illumination-

orrected image. The final gradient image is obtained by averaging
radients computed over the three channels. Then, the watershed

ransform is obtained by adopting the topographical distance ap-

roach [23] . Next, the output of the watershed transform is used

s a guide to binarize the original image and feed a circle detection

tep, for parametrizing both the pupil and the sclera boundaries.

s in several of the competing approaches submitted for MICHE-I,

he periocular region is also considered, which is localized using as

eference the length of the iris radius. Feature encoding is done by

eans of 64-bit color histograms, matched using the cosine dis-

imilarity and Hamming distance. 

The idea of Hu et al. [13] is to fuse different previously pub-

ished iris segmentation techniques, selected according to their

erformance in particular cases of degraded images. They describe

 model selection strategy, which selects the final iris parametriza-

ions based on the candidates returned by the used baseline seg-

entation strategies. This selection is made according to the image

escription provided by histograms of local gradients, that are in-

utted to a support vector machine providing the fused response.

his strategy can be easily updated by adding/substituting baseline

egmentation methods, and this is an obvious strength of the ap-

roach. 

The proposal by Haindl and Krupicka [10] is centered on the de-

ection of the non-iris components for the parametrizations of the

ris ring. In literature, it is well recognized that the accurate detec-

ion of eyelids and reflections is the prerequisite for the accurate

ris recognition, both in NIR or VW. The proposed model therefore

daptively learns its parameters on the iris texture part, and sub-

equently checks for iris reflections using the recursive prediction

nalysis. After detecting reflections, form-fitting techniques allow

nding a parametrization of the pupil. Next, data is converted into

he polar domain, where a texture analysis phase is carried out to

etermine the regions of the normalized data that should not be-

ong to the iris, according to a Bayesian paradigm. 

Two methods submitted for MICHE-I can be considered as com-

lementary to the segmentation techniques. Gragnaniello et al.

9] propose an iris liveness detection algorithm for mobile devices.

he most innovative point is to use the well known LBP texture

escriptor scheme exclusively for the high frequency components

f data, which is expected to improve the live/fake discriminabil-

ty, when compared to the traditional use of this texture descrip-

or. Bruni and Vitulano [4] propose an application of the modified

ernel object tracking to the specific problem of iris tracking. They

ely on visual features of human irises that are instinctively used

y human eye in the recognition process. Such features are used in

he definition of a target feature space as well as of a proposed a

etric that well correlates with the way human vision processes

nd compares information. As a main result, authors argue that

ne iteration of the mean shift algorithm is enough to get a faithful

stimation of iris location in subsequent frames. 

Since this paper is particularly focused in presenting the major

hallenges of iris/ocular recognition in mobile environments, it will

ot further consider the last two proposals, but will rather con-

entrate on the participating methods that deal with the issues

f segmentation and/or iris verification. The rest of the sections

ill present an exhaustive analysis of the performance achievable

y separating and recombining segmentation and recognition al-

orithms proposed by competitors, aiming at gaining insights into

he open issues and the limitations of mobile iris recognition. Since

ICHE-I was especially focused on iris segmentation, more metrics

re used to measure performance for this operation. Furthermore,

he results of proposals addressing iris recognition are discussed

aking into special account the segmentation methods allowing the

est separation of eye regions, and therefore a more reliable fea-

ure extraction and matching. 
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Table 1 

Metrics used to evaluate the quality of iris segmentation as compared with the manually determined ground truth data. 

ACCURACY Accuracy measures the proportion of true results (both true positives and true negatives) with respect to the total number of cases examined. 

PRECISION Precision measures the proportion of the true positives against all the positive results (both true positives and false positives). 

SENSITIVITY Sensitivity is also called the true positive rate , or the recall , and measures the proportion of positives that are correctly identified as such. 

SPECIFICITY Specificity is also called the true negative rate , and measures the proportion of negatives that are correctly identified as such. 

F1_SCORE F1 score is a measure of a test accuracy; it is required to considers both the precision p and the recall r of the test to compute the score; it can 

be interpreted as a weighted average of the precision and recall, defined as: F 1 score = 2 × Precision ×Recall 
Precision + Recall 

F1 score reaches its best value at 1 and 

worst at 0. 

RI Rand Index counts the fraction of pairs of pixels whose labeling is consistent between the computed segmentation and the ground truth, i.e., the 

fraction of pairs whose elements are both labeled as edge or as non-edge, both in ground truth and segmentation. 

E1_SCORE The classification error rate (E1) of the algorithm on the input image is given by the proportion of correspondent disagreeing pixels (through the 

logical EXCLUSIVE-OR operator) over the whole image. 

PRATT This metric is formulated [18] as a function of the distance between correct and measured edge positions, but it is also indirectly related to the 

false positive and false negative edges; it is defined as: 

PRAT T = 

1 
max E G ,E D 

E D ∑ 

i =1 

1 
1+ α+ d 2 

i 

(1) 

where E G and E D are the number of ground truth and detected edge points respectively, d i is the distance from the i-th detected point and the 

closest ground truth one, and α is a scaling constant set as α = 

1 
9 

as in the original formulation; the metric reflects the overall behaviour of the 

distances between the edges, and varies in the range [0,1], where 1 represents the optimal value, i.e., the edges detected coincide with the 

ground truth. 

GCE The Global Consistency Error (GCE) measures the extent to which one segmentation can be viewed as a refinement of the other; segmentations 

which are related in this manner are considered to be consistent, since they could represent the same natural image segmented at different 

scales; details on the computation can be found in [14] . 

PCC The Pearson Correlation Coefficient is a measure of the linear correlation between two variables X and Y, returning a value between + 1 and 

inclusive, where 1 is total positive correlation, 0 is no correlation, and is total negative correlation. 
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4. Segmentation results on MICHE-I DB 

All methods have been tested on a subset of MICHE-I that con-

sisted in 591 images for GS4, 571 images for IP5, and 295 images

for GT2. For this subset, sequestered ground truth data was cre-

ated by hand, by manually locating the coordinates of pupil and

iris, and the lengths of the radii of the corresponding circumfer-

ences. Candidates had no access to this data. 

4.1. The metrics 

Table 1 summarizes the metrics, typical of binary classification

tests, that have been used to evaluate the segmentation quality

achieved by the methods submitted to MICHE-I. In practice, they

measure the quality of the detected iris contour. 

Actually, each metric captures some specific ability of the an-

alyzed algorithms. In general, the ability to correctly classify an

existing edge pixel (true positives vs. false negatives) plays a role

which is different from the ability to avoid adding false positives

(vs. true negatives). They are not symmetrical from the point of

view of segmentation algorithms, in the sense that an algorithm

that achieves the former might not be so effective to achieve the

latter, as it generally happens with binary classifiers. Also the con-

sequences may have a different weight, since a lacking group of

pixels in a contour may cause difficulties in detecting a specific

contour shape, or produce an unconnected contour where a con-

nected one is needed/expected. The first 4 metrics precisely mea-

sure these different aspects separately, to provide a detailed un-

derstanding of the positive/negative aspects of each algorithm. On

the one hand, F 1 score is a popular way to get a weighted average

of the precision and recall (second and third metrics) in order to

have an overall estimate of the ability of the algorithm to distin-

guish true edge pixels from false ones without missing too many

of them. On the other hand RI measures the overall agreement be-

tween positive/negative classifications and ground truth. E 1 S core is

in some sense its complement, i.e., the proportion of disagreeing

pixels. PRATT metric evaluates accuracy from a different point of

view, by returning an overall estimate of the actual distance be-

tween the detected contours and the ground truth (therefore, in a

sense, not only true/false, but also how far from true) and is more

specific of segmentation. GCE and PCC are in a sense higher level

measures. GCE measures at which extent the errors w.r.t. ground
ruth can represent a kind of loss of detail in a multi-resolution

erspective: errors overall result in a less detailed segmentation

hough bringing much the same core information. PCC is the usual

earson correlation, to evaluate if the result and the ground truth

eflect a similar trend. 

.2. Segmentation Results 

Table 2 summarizes the scores achieved by participant methods

ccording to the metrics presented in Table 1 to evaluate the seg-

entation accuracy. It is worth underlining that not all partici-

ants presented methods for both segmentation and recognition.

herefore, some papers might be cited only in this section, while

thers appear only in the next one. Those presenting a complete

apture-to-recognition workflow appear in both. For each method

nd for each device, the first column reports the number of irises

hat were actually segmented from images captured indoor (IN),

utdoor (OUT), and the total; the difference with the original size

f the corresponding dataset represents the number of images that

ere discarded because the segmentation produced null results

r threw an exception. The method by Haindl et al. achieves the

ighest rate of successfully segmented images, while the method

sed by Barra et al. achieves the lowest. On the other hand, it ap-

ears that the usable segmentation results achieved by the latter,

lthough less, are more accurate. In fact, they provide the highest

evel of similarity with the ground truth (reasonably due to the

igher thresholds of acceptance). From the point of view of sim-

larity with ground truth, the second method achieving the best

esults is the one by Abate et al. The total numbers in absolute

uggest that the methods adopted by Barra et al. and Abate et al.

rovide higher quality masks. Notwithstanding this, the methods

y Haindl et al. and Yang et al. are more reliable in terms of rate

f success in the following recognition step. These are the reasons

hat led to a more careful investigation entailing the comparison of

he 50 best common segmentations. 

A further note that is worth adding is that in Table 2 there

s no distinction between front and rear cameras of the devices.

s a matter of fact, for this group of experiments, in order to

urther stress the segmentation algorithms, all images underwent

 down-sampling procedure reducing their resolution, therefore

ostly canceling the initial device advantage. 
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Table 2 

Comparison of segmentation quality achieved by participant methods according to the measures in Table 1 . 

# im. Acc. Prec. Sens. Spec. F1 RI E1 PRATT GCE PCC 

Barra et al. IS_IS GS4 IN 196 0.96 0.78 0.80 0.98 0.80 0.92 0.04 0.74 0.05 0.77 

OUT 223 0.96 0.81 0.80 0.98 0.82 0.93 0.04 0.76 0.05 0.78 

Tot 419 0.96 0.80 0.80 0.98 0.81 0.93 0.04 0.75 0.05 0.78 

IP5 IN 225 0.96 0.80 0.81 0.98 0.81 0.92 0.04 0.75 0.05 0.78 

OUT 231 0.96 0.81 0.78 0.98 0.81 0.93 0.04 0.75 0.05 0.77 

Tot 456 0.96 0.80 0.79 0.98 0.81 0.92 0.04 0.75 0.05 0.77 

GT2 IN 66 0.92 0.67 0.74 0.95 0.70 0.87 0.07 0.65 0.08 0.67 

OUT 90 0.96 0.79 0.87 0.97 0.85 0.93 0.04 0.81 0.05 0.82 

Tot 156 0.95 0.69 0.81 0.97 0.79 0.91 0.05 0.74 0.60 0.73 

Abate et al. BIRD GS4 IN 207 0.90 0.53 0.60 0.94 0.54 0.84 0.10 0.52 0.09 0.51 

OUT 210 0.95 0.74 0.78 0.97 0.76 0.91 0.05 0.74 0.06 0.73 

Tot 417 0.92 0.64 0.64 0.95 0.66 0.87 0.07 0.63 0.08 0.62 

IP5 IN 214 0.90 0.60 0.66 0.93 0.59 0.84 0.10 0.58 0.09 0.57 

OUT 226 0.93 0.71 0.72 0.96 0.70 0.88 0.07 0.67 0.07 0.67 

Tot 440 0.92 0.65 0.70 0.94 0.64 0.86 0.08 0.63 0.08 0.62 

GT2 IN 105 0.91 0.63 0.66 0.94 0.60 0.85 0.09 0.60 0.09 0.58 

OUT 125 0.94 0.76 0.72 0.97 0.72 0.90 0.06 0.71 0.07 0.70 

Tot 230 0.93 0.70 0.69 0.96 0.66 0.88 0.07 0.66 0.07 0.65 

Haindl et al. GS4 IN 296 0.94 0.80 0.56 0.98 0.65 0.89 0.06 0.56 0.06 0.63 

OUT 296 0.94 0.89 0.57 0.99 0.69 0.90 0.06 0.58 0.06 0.68 

Tot 591 0.94 0.85 0.57 0.99 0.67 0.89 0.06 0.57 0.06 0.66 

IP5 IN 283 0.94 0.84 0.58 0.99 0.69 0.90 0.06 0.59 0.06 0.67 

OUT 288 0.95 0.92 0.58 0.99 0.71 0.90 0.05 0.59 0.06 0.70 

Tot 571 0.95 0.88 0.58 0.99 0.70 0.90 0.05 0.59 0.06 0.69 

GT2 IN 148 0.94 0.80 0.59 0.98 0.66 0.89 0.06 0.59 0.07 0.65 

OUT 145 0.95 0.94 0.61 0.99 0.74 0.91 0.05 0.62 0.05 0.73 

Tot 293 0.95 0.87 0.60 0.99 0.70 0.90 0.05 0.60 0.06 0.69 

Yang et al. GS4 IN 290 0.95 0.95 0.53 0.99 0.68 0.90 0.05 0.53 0.05 0.68 

OUT 286 0.95 0.96 0.56 0.99 0.73 0.90 0.05 0.56 0.05 0.71 

Tot 576 0.95 0.96 0.55 0.99 0.71 0.90 0.05 0.55 0.05 0.69 

IP5 IN 276 0.95 0.97 0.52 0.99 0.68 0.90 0.05 0.53 0.05 0.68 

OUT 278 0.95 0.97 0.56 0.99 0.72 0.90 0.05 0.57 0.05 0.71 

Tot 554 0.95 0.97 0.54 0.99 0.70 0.90 0.05 0.55 0.05 0.70 

GT2 IN 138 0.94 0.91 0.54 0.99 0.69 0.89 0.06 0.55 0.06 0.67 

OUT 144 0.95 0.95 0.57 0.99 0.72 0.90 0.05 0.57 0.05 0.71 

Tot 282 0.95 0.93 0.55 0.99 0.71 0.90 0.05 0.56 0.06 0.69 
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.3. Best 50 common segmentations 

This test was carried out to provide a fairer comparison be-

ween the methods. As a matter of fact, some of them are based

n quality thresholds that cause to discard images where the iris

s occluded or not clearly visible. Others (i.e,. Haindl et al. as well

s Yang et al.) try to segment everything can be recognized as an

ris in the frame. This produces a significantly higher number of

egmented irises but, on the negative side, it increments the num-

er of false positives. Considering the issue even from a slightly

ifferent point of view, it is possible to observe that the differ-

nt strategies to identify candidate circumferences are affected by

he quality of the acquisition. When processing an adverse image,

ome segmentation algorithms need much more time to search for

 candidate area to be recognized as an iris, and sometimes they

o not find it at all. 

The images leading to the 50 best segmentations for different

ubjects, and common for all methods, have been used as a dataset

or a new run of comparisons. Table 3 allows observing that, when

orking on the pictures where the segmentation task is easier, the

esults are different from those of Table 2 above. Observing the

ean scores on all devices, the method by Haindl et al. can be

onsidered the most reliable one, as further testified by examples

n Fig. 1 . 

Due to different and unpredictable behaviour of methods over

roblematic samples, and in order to establish a common ground

or comparison, we report the processing times only for the above

best” samples, i.e., samples that are processed by all methods in

 reasonable time. It is implicit that the slowest methods are also

hose that would encounter the greatest difficulties with adverse

i  
amples. Concerning the processing speed, all methods have been

ested on an iris section of the image of about 400 × 300 pixels

esolution. The exploited computer is an Intel Xeon X5482 CPU

,20GH (dual core) 64bit, 10GB RAM. 

The segmentations by Barra et al. and Abate et al. overall pro-

ide a good compromise between processing speed and segmen-

ation accuracy, as they take (on average) less than 2 seconds for

 “good” image. This result is a very positive feature for real time

rocessing. On the other side, the method by Haindl et al. achieves

n average segmentation time of about 15 seconds, thus represent-

ng a non feasible solution to mobile platforms. Yang et al. is the

ost time consuming method, with an average time of 35 seconds

nd more. 

. Recognition Results on MICHE-I 

The results given in this section summarize the performance

chieved by the recognition methods submitted to MICHE-I in

erms of decidability, area under curve (AUC) and equal error

ate (EER). The preliminary identification of the iris ROI is carried

ut using the segmentation methods proposed for the benchmark

atabase. 

Decidability is the same FoM used for the NICE II competition

21] . It is obtained by first carrying out a “one-against-all” compar-

son for each image I = I 1 , . . . , I n of the data set. The matching pro-

ess exploits the corresponding binary maps M = M 1 , . . . , M n that

rovide the noise-free iris region identified by the segmentation

tep. This thorough comparison allows to obtain a set of intra-class

issimilarity values D 

I = D 

I 
1 
, . . . , D 

I 
k 

and a set of inter-class dissim-

larity values D 

E = D 

E 
1 , . . . , D 

E 
m 

, according to whether the pair of

mages is from the same or from different irises. The decidability
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Table 3 

Performance measures recomputed considering only the best 50 common segmentations. 

Method Device PRATT F1_score RI E1_score GCE PearsonCC 

Barra et al.-IS_IS GS4 0.962 0.948 0.955 0.024 0.023 0.849 

IP5 0.968 0.961 0.965 0.020 0.020 0.919 

GT2 0.958 0.947 0.958 0.027 0.026 0.855 

MEAN 0.962 0.952 0.960 0.024 0.023 0.874 

Abate et al.-BIRD GS4 0.963 0.966 0.959 0.026 0.021 0.833 

IP5 0.968 0.973 0.959 0.021 0.027 0.865 

GT2 0.974 0.980 0.949 0.026 0.031 0.813 

MEAN 0.968 0.973 0.956 0.026 0.025 0.837 

Haindl et al. GS4 0.980 0.981 0.964 0.019 0.022 0.881 

IP5 0.983 0.986 0.967 0.017 0.029 0.898 

GT2 0.985 0.987 0.954 0.024 0.028 0.822 

MEAN 0.983 0.985 0.961 0.020 0.026 0.867 

Yang et al. GS4 0.986 0.982 0.959 0.020 0.025 0.869 

IP5 0.987 0.988 0.952 0.020 0.027 0.849 

GT2 0.984 0.987 0.962 0.019 0.021 0.862 

MEAN 0.986 0.986 0.958 0.020 0.024 0.860 

Fig. 1. An example of images resulting in a good segmentation common to all methods. 
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value d ′ (D 

I 
1 
, . . . , D 

I 
k 
, D 

E 
1 
, . . . , D 

E 
m 

) → [0 , ∞ [ used as evaluation mea-

sure is computed as: 

d ′ = 

| a v g(D 

I ) − a v g(D 

E ) | √ 

1 
2 

× (σ 2 (D 

I ) + σ 2 (D 

E )) 
, (2)

where avg ( D 

I ) and avg ( D 

E ) denote the average values of the intra-

class and inter-class comparisons and σ 2 ( D 

I ) and σ 2 ( D 

E ) are the

corresponding variance values. We implemented a “bootstrapping-

like” approach for the computation of 95% Confidence Intervals

(CI_low CI_high) an d the Bootstrapped Standard Error (SE) for

DEC, EER and AUC associated to each experiment. The measure-

ments are reported in the form: VALUE ± SE (CI_low CI_high). 
The recognition algorithms considered are presented in [1,2,22] ,

nd [24] . As anticipated, when a same proposal contained both a

egmentation and a recognition algorithm, and these were clearly

eparable, they were extracted and recombined in all possible

ays. In other words, whether the participants used a segmenta-

ion algorithm of their own of not, we tested all recognition meth-

ds with all segmentation ones. It is worth pointing out that, when

ecognition is assessed, it is of great interest to also test cross-

evice performance. To this aim, sets of images acquired by the

ame device are alternatively used as either probe set (gallery) or

s test set (or as both, for intra-device recognition). All possible

ombinations of probe/gallery images were included in the tests.
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Fig. 2. ROC curves for each pair of devices (FAR on horizontal axis and GAR on vertical axis). The figure is divided into four areas. From top to bottom, row (a) collects the 

cross-device ROC curves achieved when segmenting with IS_IS algorithm. The second row (b) of plots refers to results achieved when BIRD is used. The third row (c) shows 

the results achieved when segmenting by Haindl et al. algorithm, and the last one (d) is related to the use of the segmentation algorithm by Yang et al. 
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ince the main target of MICHE-I was segmentation, results will be

resented and discussed taking it as the principal variable element.

ables 4 and 5 report the results achieved for each segmentation

lgorithm, considering the different recognition algorithms and the

ifferent intra- and inter-device classes of comparison. Also, Fig. 2

resents an overall view of the ROC curves related to the same

est conditions, to provide a more immediate insight on the lev-

ls of interoperability (cross-sensor recognition) supported by each

ethod. To this aim, curves relating to different recognition algo-

ithms, tested on the same combination of probe/gallery, after the

ame segmentation, are grouped together. In all cases, it is obvious

ow significantly the recognition method by Santos et al. outper-

orms the other three in all classes of comparisons and with all

egmentation algorithms. Moreover, it is possible to observe that

he class of comparison GT2vsGT2 achieves a higher level of perfor-

ance (on average and compared to the others) in terms of ROC,

otwithstanding the poorer resolution of the embedded camera.

his is confirmed by inspecting the EER values in the tables, even

hough this class generally presents the lowest decidability values.

owever, these results do not take into account that the sizes of

robe and gallery sets for GT2 are smaller than the others. The

ower percentage of uncertainty contributes to increase the level

f performance. As expected, it is possible to notice a general de-

rease of performance in cross-device operations, except for some

ases, that will be underlined when appropriate. It is also interest-

ng to notice that performances are generally affected by the ex-

hange in the probe/gallery role of images taken by the different

evices. In the following subsections, we organize the recognition

esults by the exploited segmentation algorithm. 

Results by segmenting with the IS_IS mobile algorithm 

Table 4 (top part) summarizes the performance in terms of the

ecidability, AUC, and EER, of the different recognition methods

hen segmenting with IS_IS algorithm. It should be noted that all

ethods achieved better performance, except for decidability, on

T2vsGT2. Fig. 2 (a) allows to better appreciate both the higher

ecognition performance of Santos et al., and the good behaviour

f GT2vsGT2 class of test. 

Results by segmenting with the BIRD algorithm 

Table 4 (bottom part) shows the performance of the different

ecognition methods in terms of decidability, AUC, and EER, when
xploiting Abate et al. algorithm for segmentation (BIRD, based on

atershed). Both the bottom part of Table 4 and Fig. 2 (b) confirm

he same general trend underlined for IS_IS segmentation: Santos

t al. is the method providing the best recognition performance,

nd GT2vsGT2 is the class with the best behaviour. It can be no-

iced how ROC curves of Santos et al. are definitely better than

hose for the other methods, that present very similar trends in-

tead. 

Results by segmenting with the algorithm by Haindl et al. 

Table 5 (top part) provides the recognition performance of the

ifferent recognition methods in terms of decidability, AUC, and

ER, when exploiting the segmentation method proposed in Haindl

t al. Besides observing an even higher superiority of Santos et al.,

t is interesting to also notice how, with this segmentation method,

he ROC curves of the other recognition algorithms are grouped

ithin the same band, that is even narrower than when exploiting

S_IS and BIRD segmentation methods (see Fig. 2 (c)). 

Results by segmenting with the algorithm by Yang et al. 

Table 5 (bottom part) shows the achieved performance of the

ifferent recognition methods in terms of decidability, AUC, and

ER, when exploiting the segmentation method proposed in Yang

t al. The method by Yang et al. further accentuates the behav-

or observed when using Haindl et al. method. It is worth noticing

hat, with this segmentation, the recognition by Raja et al. is the

ne achieving the best intra-device recognition in terms of decid-

bility (see also Fig. 2 (d)). In summary, it is possible to observe

hat these last two segmentation methods are somehow more sta-

le, since they provide results that allow less performance differ-

nce in the following recognition step. 

.1. Pairwise score comparison 

In order to carry out some deeper observations on the key as-

ects that can affect either a good or a bad recognition result,

he best and worst samples per experiment have been extracted

rom pairwise comparisons. In this context, an experiment is rep-

esented by the combination of a capture device, a segmentation

ethod and a recognition algorithm. In particular, the focus is on

he best/worst pairwise comparisons that were common to all ex-

eriments. In more detail, for each experiment, each gallery tem-
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Table 4 

Performance of the recognition methods in terms of decidability, AUC and EER, when segmenting with the algorithms by Barra et al (top) and by Abate et al (bottom). The best results for each intra-/inter-device test are in bold, 

those for each method are underlined. 

Device Recognition 

Method 

GS4 IP5 GT2 

DEC AUC EER DEC AUC EER DEC AUC EER 

Barra et al. segmentation algorithm (IS_IS) 

GS4 Barra et al. 1.871 ± 0.023 

(1.824 −1.915) 

0.693 ± 0.008 

(0.677 −0.708) 

0.394 ± 0.007 

(0.381 −0.407) 

2.120 ± 0.016 

(2.089 −2.146) 

0.593 ± 0.008 

(0.578 −0.610) 

0.428 ± 0.007 

(0.414 −0.440) 

1.935 ± 0.035 

(1.885 −2.032) 

0.555 ± 0.012 

(0.529 −0.579) 

0.461 ± 0.016 

(0.434–0.490) 

Raja et al. 4.972 ± 0.273 

(4.760 −5.697) 

0.664 ± 0.007 

(0.650 −0.677) 

0.400 ± 0.007 

(0.385 −0.414) 

2.731 ± 0.171 

(2.377 −3.114) 

0.569 ± 0.004 

(0.561 −0.577) 

0.449 ± 0.005 

(0.439 −0.457) 

3.312 ± 0.180 

(2.963 −3.742) 

0.612 ± 0.011 

(0.590 −0.635) 

0.433 ± 0.011 

(0.411 −0.455) 

Abate et al. 8.203 ± 0.186 

(7.569 −8.386) 

0.764 ± 0.007 

(0.752 −0.779) 

0.322 ± 0.006 

(0.309 −0.334) 

4.433 ± 0.050 

(4.309 −4.517) 

0.665 ± 0.008 

(0.650 −0.681) 

0.386 ± 0.010 

(0.369 −0.409) 

4.172 ± 0.118 

(4.032 −4.553) 

0.739 ± 0.013 

(0.716 −0.767) 

0.307 ± 0.021 

(0.261 −0.346) 

Santos et al. 6.211 ± 0.180 

(5.695 −6.483) 

0.874 ± 0.007 

(0.864 −0.889) 

0.210 ± 0.011 

(0.185 −0.226) 

5.972 ± 0.112 

(5.797 −6.214) 

0.811 ± 0.008 

(0.798 −0.828) 

0.254 ± 0.006 

(0.242 −0.267) 

5.030 ± 0.311 

(4.818 −6.038) 

0.897 ± 0.009 

(0.886 −0.917) 

0.183 ± 0.010 

(0.156 −0.197) 

IP5 Barra et al. 2.192 ± 0.029 

(2.138 −2.247) 

0.590 ± 0.007 

(0.576 −0.603) 

0.430 ± 0.008 

(0.414 −0.446) 

2.341 ± 0.020 

(2.302 −2.381) 

0.692 ± 0.007 

(0.679 −0.705) 

0.374 ± 0.006 

(0.362 −0.385) 

2.387 ± 0.036 

(2.325 −2.459) 

0.529 ± 0.014 

(0.500 −0.554) 

0.467 ± 0.011 

(0.445 −0.487) 

Raja et al. 3.157 ± 0.181 

(2.994 −3.725) 

0.570 ± 0.005 

(0.560 −0.580) 

0.458 ± 0.008 

(0.443 −0.473) 

5.393 ± 0.299 

(5.180 −6.378) 

0.667 ± 0.006 

(0.655 −0.678) 

0.384 ± 0.008 

(0.370 −0.398) 

3.472 ± 0.224 

(3.003 −−4.055) 

0.579 ± 0.013 

(0.552 −0.604) 

0.443 ± 0.013 

(0.419 −0.470) 

Abate et al. 4.805 ± 0.080 

(4.578 −4.917) 

0.662 ± 0.008 

(0.648 −0.677) 

0.375 ± 0.008 

(0.361 −0.391) 

7.201 ± 0.079 

(7.008 −7.338) 

0.771 ± 0.007 

(0.759 −0.786) 

0.293 ± 0.007 

(0.279 −0.306) 

4.025 ± 0.047 

(3.903 −4.090) 

0.671 ± 0.013 

(0.646 −0.696) 

0.412 ± 0.011 

(0.392 −0.434) 

Santos et al. 10.557 ± 1.657 

(6.036 −11.408) 

0.817 ± 0.009 

(0.804 −0.837) 

0.255 ± 0.007 

(0.240 −0.267) 

11.400 ± 1.734 

(6.082 −12.297) 

0.865 ± 0.006 

(0.855 −0.878) 

0.217 ± 0.008 

(0.202 −0.231) 

7.730 ± 1.004 

(4.873 −9.528) 

0.834 ± 0.012 

(0.815 −0.860) 

0.212 ± 0.017 

(0.179 −0.242) 

GT2 Barra et al. 2.208 ± 0.034 

(2.145 −2.275) 

0.576 ± 0.010 

(0.558 −0.596) 

0.432 ± 0.015 

(0.407 −0.463) 

2.540 ± 0.027 

(2.486 −2.591) 

0.539 ± 0.010 

(0.519 −0.558) 

0.490 ± 0.007 

(0.475 −0.503) 

1.929 ± 0.030 

(1.869 −1.984) 

0.814 ± 0.010 

(0.796 −0.836) 

0.288 ± 0.016 

(0.254 −0.314) 

Raja et al. 1.747 ± 0.772 

(1.230 −3.971) 

0.647 ± 0.009 

(0.629 −0.664) 

0.380 ± 0.012 

(0.355 −0.402) 

1.492 ± 0.585 

(1.250 −3.472) 

0.601 ± 0.008 

(0.585 −0.616) 

0.417 ± 0.010 

(0.393 −0.435) 

3.240 ± 1.535 

(2.614 −7.495) 

0.846 ± 0.011 

(0.825 −0.870) 

0.225 ± 0.012 

(0.200 −0.245) 

Abate et al. 4.204 ± 0.058 

(4.088 −4.321) 

0.665 ± 0.010 

(0.647 −0.682) 

0.376 ± 0.015 

(0.347 −0.403) 

4.447 ± 0.084 

(4.229 −4.605) 

0.674 ± 0.009 

(0.658 −0.691) 

0.355 ± 0.009 

(0.339 −0.372) 

7.531 ± 0.079 

(7.061 −7.624) 

0.792 ± 0.013 

(0.771 −0.820) 

0.289 ± 0.016 

(0.262 −0.317) 

Santos et al. 4.871 ± 0.272 

(4.660 −5.670) 

0.844 ± 0.008 

(0.830 −0.862) 

0.236 ± 0.008 

(0.220 −0.250) 

4.910 ± 0.268 

(4.701 −5.736) 

0.811 ± 0.010 

(0.793 −0.834) 

0.250 ± 0.011 

(0.230 −0.269) 

4.207 ± 0.186 

(4.024 −4.738) 

0.918 ± 0.009 

(0.907 −0.940) 

0.153 ± 0.016 

(0.113 −0.177) 

Abate et al. segmentation algorithm (BIRD) 

GS4 Barra et al. 1.739 ± 0.031 

(1.676 −1.796) 

0.608 ± 0.008 

(0.594 −0.625) 

0.418 ± 0.007 

(0.404 −0.431) 

2.368 ± 0.020 

(2.327 −2.406) 

0.540 ± 0.008 

(0.525 −0.558) 

0.448 ± 0.005 

(0.439 −0.458) 

1.774 ± 0.029 

(1.710 −1.830) 

0.567 ± 0.008 

(0.553 −0.582) 

0.449 ± 0.008 

(0.434 −0.465) 

Raja et al. 6.830 ± 0.125 

(6.652 −7.109) 

0.646 ± 0.007 

(0.633 −0.659) 

0.408 ± 0.006 

(0.394 −0.418) 

3.917 ± 0.094 

(3.775 −4.129) 

0.575 ± 0.006 

(0.562 −0.586) 

0.450 ± 0.007 

(0.436 −0.464) 

3.788 ± 0.068 

(3.674 −3.938) 

0.618 ± 0.006 

(0.607 −0.630) 

0.424 ± 0.007 

(0.410 −0.438) 

Abate et al. 6.916 ± 0.055 

(6.833 −7.047) 

0.724 ± 0.008 

(0.710 −0.739) 

0.337 ± 0.008 

(0.322 −0.352) 

4.643 ± 0.057 

(4.531 −4.762) 

0.636 ± 0.009 

(0.619 −0.654) 

0.420 ± 0.013 

(0.388 −0.440) 

4.847 ± 0.129 

(4.476 −4.975) 

0.664 ± 0.009 

(0.646 −0.682) 

0.369 ± 0.007 

(0.355 −0.383) 

Santos et al. 5.761 ± 0.165 

(5.572 −6.280) 

0.873 ± 0.006 

(0.863 −0.886) 

0.204 ± 0.007 

(0.193 −0.219) 

5.527 ± 0.123 

(5.346 −5.832) 

0.845 ± 0.007 

(0.834 −0.860) 

0.218 ± 0.005 

(0.209 −0.227) 

5.506 ± 0.220 

(5.302 −6.156) 

0.823 ± 0.007 

(0.810 −0.838) 

0.247 ± 0.009 

(0.227 −0.261) 

IP5 Barra et al. 2.204 ± 0.043 

(2.127 −2.295) 

0.523 ± 0.007 

(0.510 −0.537) 

0.476 ± 0.007 

(0.464 −0.491) 

2.629 ± 0.025 

(2.585 −2.676) 

0.602 ± 0.008 

(0.586 −0.619) 

0.437 ± 0.008 

(0.420 −0.451) 

2.236 ± 0.044 

(2.152 −2.326) 

0.501 ± 0.006 

(0.489 −0.513) 

0.491 ± 0.007 

(0.477 −0.504) 

Raja et al. 3.225 ± 0.087 

(3.095 −3.442) 

0.575 ± 0.006 

(0.564 −0.586) 

0.450 ± 0.010 

(0.428 −0.466) 

6.752 ± 0.221 

(6.334 −7.323) 

0.647 ± 0.006 

(0.635 −0.660) 

0.397 ± 0.008 

(0.381 −0.411) 

4.021 ± 0.157 

(3.556 −4.281) 

0.538 ± 0.006 

(0.527 −0.548) 

0.474 ± 0.010 

(0.455 −0.491) 

Abate et al. 4.771 ± 0.117 

(4.481 −4.914) 

0.613 ± 0.009 

(0.596 −0.630) 

0.429 ± 0.009 

(0.410 −0.445) 

6.765 ± 0.087 

(6.676 −6.931) 

0.661 ± 0.007 

(0.647 −0.675) 

0.391 ± 0.008 

(0.378 −0.409) 

5.290 ± 0.304 

(4.391 −5.483) 

0.578 ± 0.008 

(0.562 −0.595) 

0.448 ± 0.008 

(0.432 −0.463) 

Santos et al. 5.650 ± 0.154 

(5.470 −6.109) 

0.811 ± 0.008 

(0.798 −0.829) 

0.259 ± 0.007 

(0.246 −0.272) 

5.800 ± 0.147 

(5.435 −6.056) 

0.846 ± 0.007 

(0.836 −0.861) 

0.220 ± 0.008 

(0.203 −0.233) 

10.905 ± 1.433 

(6.076 −11.656) 

0.805 ± 0.007 

(0.793 −0.822) 

0.273 ± 0.009 

(0.257 −0.291) 

GT2 Barra et al. 1.698 ± 0.026 

(1.650 −1.748) 

0.540 ± 0.007 

(0.525 −0.553) 

0.478 ± 0.010 

(0.462 −0.500) 

2.344 ± 0.019 

(2.305 −2.379) 

0.519 ± 0.008 

(0.503 −0.534) 

0.474 ± 0.006 

(0.463 −0.488) 

1.883 ± 0.026 

(1.830 −1.931) 

0.742 ± 0.009 

(0.725 −0.761) 

0.315 ± 0.009 

(0.299 −0.334) 

Raja et al. 4.418 ± 0.222 

(3.849 −4.854) 

0.569 ± 0.006 

(0.557 −0.581) 

0.447 ± 0.007 

(0.432 −0.461) 

4.552 ± 0.155 

(4.352 −4.952) 

0.599 ± 0.006 

(0.588 −0.611) 

0.437 ± 0.007 

(0.422 −0.448) 

10.011 ± 0.412 

(9.611 −11.090) 

0.761 ± 0.008 

(0.746 −0.777) 

0.323 ± 0.012 

(0.294 −0.343) 

Abate et al. 4.937 ± 0.054 

(4.839 −5.057) 

0.654 ± 0.008 

(0.638 −0.670) 

0.410 ± 0.006 

(0.398 −0.422) 

4.587 ± 0.109 

(4.483 −4.903) 

0.607 ± 0.008 

(0.589 −0.624) 

0.425 ± 0.009 

(0.410 −0.443) 

8.222 ± 0.072 

(8.122 −8.402) 

0.755 ± 0.009 

(0.739 −0.775) 

0.345 ± 0.006 

(0.331 −0.357) 

Santos et al. 5.901 ± 0.106 

(5.730 −6.157) 

0.839 ± 0.009 

(0.826 −0.857) 

0.236 ± 0.008 

(0.215 −0.250) 

5.838 ± 0.111 

(5.666 −6.060) 

0.845 ± 0.007 

(0.833 −0.860) 

0.236 ± 0.007 

(0.218 −0.248) 

6.892 ± 0.597 

(5.185 −7.343) 

0.901 ± 0.007 

(0.891 −0.915) 

0.165 ± 0.007 

(0.153 −0.178) 
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Table 5 

Performance of the recognition methods in terms of decidability, AUC and EER, when segmenting with the algorithms by Haindl et al (top) and by Yang et al (bottom). The best results for each intra-/inter-device test are in 

bold, those for each method are underlined. 

Device Recognition 

Method 

GS4 IP5 GT2 

DEC AUC EER DEC AUC EER DEC AUC EER 

Haindl et al. segmentation algorithm 

GS4 Barra et al. 2.640 ± 0.023 

(2.587 −2.681) 

0.707 ± 0.007 

(0.694 −0.720) 

0.368 ± 0.005 

(0.358 −0.378) 

2.819 ± 0.024 

(2.757 −2.855) 

0.631 ± 0.008 

(0.616 −0.646) 

0.417 ± 0.008 

(0.401 −0.431) 

2.525 ± 0.034 

(2.462 −2.596) 

0.605 ± 0.006 

(0.594 −0.617) 

0.430 ± 0.007 

(0.416–0.4 4 4) 

Raja et al. 6.488 ± 0.173 

(6.267 −6.977) 

0.673 ± 0.005 

(0.663 −0.682) 

0.388 ± 0.005 

(0.377 −0.397) 

3.059 ± 0.080 

(2.949 −3.279) 

0.592 ± 0.005 

(0.583 −0.601) 

0.436 ± 0.006 

(0.426 −0.449) 

3.767 ± 0.134 

(3.462 −4.079) 

0.573 ± 0.004 

(0.564 −0.581) 

0.461 ± 0.006 

(0.449 −0.471) 

Abate et al. 5.355 ± 0.075 

(5.244 −5.505) 

0.699 ± 0.006 

(0.687 −0.711) 

0.358 ± 0.009 

(0.343 −0.376) 

4.469 ± 0.095 

(4.256 −4.704) 

0.610 ± 0.007 

(0.598 −0.624) 

0.422 ± 0.006 

(0.408 −0.433) 

4.961 ± 0.057 

(4.843 −5.070) 

0.583 ± 0.007 

(0.570 −0.596) 

0.451 ± 0.006 

(0.439 −0.463) 

Santos et al. 6.131 ± 0.143 

(5.811 −6.400) 

0.878 ± 0.005 

(0.869 −0.889) 

0.198 ± 0.005 

(0.187 −0.207) 

6.4 4 4 ± 0.191 

(5.903 −6.750) 

0.840 ± 0.006 

(0.829 −0.851) 

0.235 ± 0.008 

(0.220 −0.249) 

6.639 ± 0.217 

(6.020 −6.950) 

0.840 ± 0.007 

(0.828 −0.855) 

0.229 ± 0.007 

(0.216 −0.243) 

IP5 Barra et al. 2.907 ± 0.028 

(2.853 −2.959) 

0.615 ± 0.007 

(0.602 −0.630) 

0.429 ± 0.011 

(0.407 −0.449) 

2.917 ± 0.019 

(2.876 −2.950) 

0.718 ± 0.007 

(0.705 −0.732) 

0.339 ± 0.007 

(0.325 −0.350) 

3.010 ± 0.051 

(2.908 −3.117) 

0.567 ± 0.007 

(0.554 −0.581) 

0.452 ± 0.007 

(0.436 −0.465) 

Raja et al. 3.199 ± 0.261 

(2.956 −3.937) 

0.593 ± 0.004 

(0.585 −0.601) 

0.441 ± 0.007 

(0.425 −0.455) 

6.207 ± 0.438 

(5.927 −7.566) 

0.677 ± 0.005 

(0.667 −0.688) 

0.386 ± 0.007 

(0.374 −0.400) 

3.678 ± 0.284 

(3.134 −4.487) 

0.590 ± 0.005 

(0.579 −0.599) 

0.417 ± 0.008 

(0.404 −0.437) 

Abate et al. 4.360 ± 0.063 

(4.194 −4.469) 

0.585 ± 0.008 

(0.571 −0.601) 

0.431 ± 0.007 

(0.417 −0.4 4 4) 

5.610 ± 0.056 

(5.515 −5.710) 

0.664 ± 0.007 

(0.652 −0.678) 

0.379 ± 0.006 

(0.367 −0.389) 

4.918 ± 0.069 

(4.734 −5.006) 

0.602 ± 0.007 

(0.590 −0.615) 

0.430 ± 0.006 

(0.418 −0.443) 

Santos et al. 5.356 ± 0.079 

(5.223 −5.516) 

0.838 ± 0.006 

(0.827 −0.849) 

0.247 ± 0.008 

(0.229 −0.260) 

5.438 ± 0.085 

(5.304 −5.620) 

0.868 ± 0.006 

(0.859 −0.880) 

0.220 ± 0.007 

(0.206 −0.233) 

7.199 ± 0.420 

(5.773 −7.531) 

0.818 ± 0.007 

(0.805 −0.833) 

0.265 ± 0.006 

(0.251 −0.277) 

GT2 Barra et al. 2.384 ± 0.018 

(2.349 −2.418) 

0.540 ± 0.009 

(0.524 −0.558) 

0.462 ± 0.007 

(0.449 −0.474) 

2.868 ± 0.016 

(2.834 −2.898) 

0.554 ± 0.009 

(0.535 −0.571) 

0.467 ± 0.010 

(0.450 −0.485) 

2.048 ± 0.024 

(1.999 −2.094) 

0.713 ± 0.006 

(0.702 −0.727) 

0.339 ± 0.006 

(0.327 −0.350) 

Raja et al. 3.767 ± 0.163 

(3.487 −4.152) 

0.605 ± 0.006 

(0.594 −0.617) 

0.432 ± 0.010 

(0.415 −0.451) 

4.054 ± 0.198 

(3.683 −4.477) 

0.609 ± 0.006 

(0.598 −0.619) 

0.422 ± 0.005 

(0.413 −0.431) 

8.630 ± 0.414 

(8.194 −9.713) 

0.738 ± 0.003 

(0.731 −0.745) 

0.339 ± 0.004 

(0.330 −0.347) 

Abate et al. 4.594 ± 0.092 

(4.364 −4.758) 

0.565 ± 0.007 

(0.552 −0.578) 

0.467 ± 0.007 

(0.451 −0.480) 

4.791 ± 0.056 

(4.685 −4.899) 

0.589 ± 0.007 

(0.576 −0.603) 

0.432 ± 0.006 

(0.419 −0.4 4 4) 

6.467 ± 0.064 

(6.339 −6.562) 

0.660 ± 0.006 

(0.650 −0.671) 

0.422 ± 0.005 

(0.412 −0.432) 

Santos et al. 6.624 ± 0.136 

(6.403 −6.910) 

0.847 ± 0.006 

(0.837 −0.859) 

0.224 ± 0.005 

(0.214 −0.234) 

6.799 ± 0.158 

(6.570 −7.157) 

0.818 ± 0.007 

(0.807 −0.832) 

0.270 ± 0.006 

(0.257 −0.282) 

6.201 ± 0.121 

(6.012 −6.465) 

0.908 ± 0.004 

(0.900 −0.916) 

0.163 ± 0.007 

(0.150 −0.176) 

Yang et al. segmentation algorithm 

GS4 Barra et al. 1.201 ± 0.023 

(1.155 −1.240) 

0.583 ± 0.006 

(0.572 −0.596) 

0.434 ± 0.007 

(0.420 −0.448) 

1.761 ± 0.016 

(1.727 −1.787) 

0.539 ± 0.008 

(0.526 −0.554) 

0.473 ± 0.006 

(0.462 −0.484) 

1.357 ± 0.022 

(1.309 −1.398) 

0.532 ± 0.006 

(0.522 −0.543) 

0.480 ± 0.007 

(0.467 −0.493) 

Raja et al. 6.286 ± 0.290 

(6.044 −7.254) 

0.662 ± 0.005 

(0.652 −0.673) 

0.401 ± 0.008 

(0.387 −0.416) 

3.382 ± 0.068 

(3.268 −3.522) 

0.594 ± 0.004 

(0.587 −0.601) 

0.437 ± 0.006 

(0.425 −0.448) 

3.449 ± 0.103 

(3.196 −3.663) 

0.587 ± 0.005 

(0.576 −0.597) 

0.451 ± 0.007 

(0.436 −0.464) 

Abate et al. 5.227 ± 0.085 

(5.108 −5.464) 

0.664 ± 0.007 

(0.651 −0.677) 

0.386 ± 0.005 

(0.376 −0.396) 

3.830 ± 0.056 

(3.729 −3.952) 

0.591 ± 0.008 

(0.576 −0.608) 

0.427 ± 0.006 

(0.416 −0.439) 

4.498 ± 0.045 

(4.389 −4.571) 

0.604 ± 0.007 

(0.588 −0.618) 

0.437 ± 0.007 

(0.425 −0.452) 

Santos et al. 6.077 ± 0.134 

(5.893 −6.427) 

0.899 ± 0.006 

(0.891 −0.912) 

0.176 ± 0.006 

(0.162 −0.185) 

5.875 ± 0.106 

(5.721 −6.142) 

0.886 ± 0.005 

(0.877 −0.898) 

0.190 ± 0.005 

(0.180 −0.198) 

6.396 ± 0.145 

(6.064 −6.667) 

0.860 ± 0.006 

(0.850 −0.874) 

0.205 ± 0.005 

(0.196 −0.214) 

IP5 Barra et al. 1.825 ± 0.038 

(1.760 −1.901) 

0.537 ± 0.004 

(0.530 −0.544) 

0.472 ± 0.005 

(0.463 −0.480) 

2.231 ± 0.029 

(2.177 −2.288) 

0.663 ± 0.006 

(0.652 −0.675) 

0.381 ± 0.005 

(0.371 −0.390) 

1.906 ± 0.037 

(1.832 −1.981) 

0.531 ± 0.004 

(0.523 −0.538) 

0.471 ± 0.005 

(0.461 −0.479) 

Raja et al. 3.537 ± 0.225 

(3.132 −4.234) 

0.605 ± 0.004 

(0.597 −0.613) 

0.443 ± 0.005 

(0.433 −0.453) 

6.382 ± 0.373 

(6.077 −7.485) 

0.670 ± 0.005 

(0.661 −0.678) 

0.396 ± 0.006 

(0.381 −0.407) 

3.311 ± 0.182 

(3.157 −3.887) 

0.587 ± 0.006 

(0.575 −0.597) 

0.439 ± 0.005 

(0.428 −0.449) 

Abate et al. 3.955 ± 0.054 

(3.864 −4.088) 

0.648 ± 0.006 

(0.636 −0.660) 

0.391 ± 0.007 

(0.378 −0.403) 

4.744 ± 0.077 

(4.637 −4.959) 

0.684 ± 0.008 

(0.671 −0.699) 

0.390 ± 0.006 

(0.375 −0.401) 

4.533 ± 0.052 

(4.392 −4.599) 

0.558 ± 0.007 

(0.544 −0.573) 

0.456 ± 0.006 

(0.445 −0.468) 

Santos et al. 5.823 ± 0.123 

(5.665 −6.176) 

0.866 ± 0.005 

(0.856 −0.877) 

0.215 ± 0.005 

(0.207 −0.228) 

5.615 ± 0.085 

(5.473 −5.816) 

0.887 ± 0.005 

(0.878 −0.897) 

0.198 ± 0.006 

(0.185 −0.213) 

6.036 ± 0.132 

(5.877 −6.389) 

0.838 ± 0.006 

(0.828 −0.851) 

0.245 ± 0.008 

(0.225 −0.258) 

GT2 Barra et al. 1.281 ± 0.018 

(1.246 −1.315) 

0.538 ± 0.004 

(0.531 −0.546) 

0.472 ± 0.005 

(0.463 −0.483) 

1.834 ± 0.014 

(1.806 −1.860) 

0.552 ± 0.006 

(0.541 −0.564) 

0.466 ± 0.005 

(0.455 −0.475) 

1.429 ± 0.023 

(1.390 −1.486) 

0.685 ± 0.005 

(0.677 −0.695) 

0.358 ± 0.005 

(0.349 −0.369) 

Raja et al. 5.263 ± 0.411 

(4.118 −5.659) 

0.587 ± 0.004 

(0.580 −0.594) 

0.449 ± 0.006 

(0.438 −0.460) 

3.743 ± 0.124 

(3.445 −3.973) 

0.574 ± 0.004 

(0.566 −0.581) 

0.451 ± 0.006 

(0.440 −0.464) 

7.227 ± 0.158 

(6.995 −7.582) 

0.736 ± 0.004 

(0.729 −0.744) 

0.334 ± 0.004 

(0.327 −0.341) 

Abate et al. 4.605 ± 0.103 

(4.317 −4.724) 

0.600 ± 0.006 

(0.589 −0.612) 

0.428 ± 0.006 

(0.417 −0.439) 

4.442 ± 0.053 

(4.340 −4.545) 

0.568 ± 0.005 

(0.559 −0.579) 

0.4 4 4 ± 0.004 

(0.435 −0.453) 

5.964 ± 0.083 

(5.769 −6.052) 

0.712 ± 0.005 

(0.702 −0.723) 

0.350 ± 0.007 

(0.337 −0.363) 

Santos et al. 6.728 ± 0.216 

(6.051 −7.038) 

0.858 ± 0.005 

(0.849 −0.869) 

0.216 ± 0.005 

(0.206 −0.224) 

6.647 ± 0.206 

(6.038 −6.935) 

0.855 ± 0.005 

(0.847 −0.866) 

0.227 ± 0.005 

(0.218 −0.236) 

6.094 ± 0.164 

(5.597 −6.311) 

0.924 ± 0.004 

(0.918 −0.932) 

0.143 ± 0.004 

(0.136 −0.150) 
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Table 6 

Iris samples providing the best and worst recognition results shared across all recognition 

methods (see the text for the definition of “best” and “worst”). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

List of verification scores (dissimilarities) in the range [0,1] on the iris samples 

in Fig. 3 , that provides unpredictably different results among the recognition 

methods; the worst result is underlined, the best one is in bold. 

Segmentation Recognition 

Barra et al. Raja et al. Abate et al. Santos et al. 

Barra et al. 0.104 0.356 0.669 0.136 

Abate et al. 0.007 0.253 0.286 0.207 

Haindl et al. 0.455 0.429 0.637 0.636 

Yang et al. 0.075 0.457 0.594 0.332 
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plate is compared with each of the others of the same subject, and

the full set of the obtained intra-subject dissimilarity scores is or-

dered by ascending values. Of course, such scores may fall in dif-

ferent ranges and have different distributions among the methods,

therefore the numerical results of different experiments are not al-

ways directly comparable. However, it is still possible and interest-

ing to compare the obtained rankings. The samples considered as

the “best” ones, always achieve very good similarity when com-

pared with samples of the same subject, and the resulting values

appear in the first positions of all the described ordered lists. The

symmetric behavior holds for the “worst” samples, when compared

with samples of the same subject. In other words, the best sam-

ples always achieve low dissimilarity scores for the same subject in

probe/gallery (of course for different captures), while worst sam-

ples always achieve high dissimilarity scores for the same subject

in probe/gallery. Reporting all the results observed for this task,

for all possible experiments carried out in this study, would have

been relatively difficult and hard to summarise, as well as cum-

bersome for the reader. Therefore, we selected only the most rep-

resentative either positive or negative results, that testify either a

similar or contradictory trend in all experiments. Out of this sub-

set, we selected the acquisitions which enable to make the most

relevant observations regarding their characterizing features, and,

consequently, their impact on recognition performances. This pro-

vides an easier to analyze and comprehensive point of view on the

results, while reducing redundant information. 

The images in the right part of Table 6 illustrate some exam-

ples of the iris samples that produced the worst recognition results

for genuine/impostor pairwise comparisons. By analysing their fea-

tures, it is possible to observe that the occlusions by the eyelids are

rather evident in most of the pictures. Also, the average brightness

of images is low, or the iris falls in a region affected by shadows, a

condition that makes the extraction of iris features generally hard.

The last picture shown at the bottom of the fourth column rep-

resents an extremely challenging yet quite common condition in

outdoor settings, where a recognition system may fail. Even if its

contribution to the scope of this section is rather limited, it is a

useful candidate to illustrate the level of complexity of the MICHE-

I contest (there are many pictures that present this kind of en-

vironmental noise). Conversely, the relevant well recognized sub-

jects also present a collection of non-trivial samples (on the left

in Table 6 ) taken either in outdoor or indoor conditions. From the

good results obtained with such samples, it is possible to observe

that in “good” samples the visibility of the irises and of the pupils

is high, thus making it easier to detect and segment them. Further-

more, differently from expected, the environmental reflections on

eye surface in outdoor condition do not necessarily imply a drop

t  
n performances. Therefore, it is interesting to investigate the cases

here such reflections rather hinder a reliable processing. Fig. 3

hows, on the left, an interesting typical example of this condition,

ith an indoor sample of the same subject on the right. 

The iris sample on the left of Fig. 3 is interesting because it

resents an extremely good level of detail due to the visibility of

ood iris contours and a satisfactory illumination. Notwithstanding

his, it has been selected as a representative candidate of many

imilar acquisitions in MICHE-I, for which the recognition methods

rovided discordant results in verification mode, when comparison

as carried out with a good template of the same subject. It is

ossible to observe that in this image the iris region is significantly

ccluded by environmental reflections. On one hand, this makes it

imilar to some “good” ones in Table 6 . On the other hand, the

atter are among those providing good recognition accuracy. How-

ver, by comparing those samples with the problematic one, we

an further notice that in Fig. 3 the high ambient illumination led

o a sharp mirroring of the mobile device on user’s eye (it is also

ossible to detect the user’s hand and other objects). This condi-

ion causes the detection of a significant amount of fake iris fea-

ures, increasing the entropy of the iris image and, consequently,

he ambiguity of the subject’s identity. Table 7 reports the dissim-

larity scores when the iris on the left of Fig. 3 is compared with

nother one extracted from a sample belonging to the same sub-

ect. The considered comparison is with the sample on the right of

he same figure, with results in Table 7 . Such results point out the

entioned behaviour. They also show that, in this specific case, the

ecognition methods by Barra et al. and by Santos et al. achieve a

ood result when compared to verification scores of the other two

ethods, depending on the segmentation method adopted. How-

ver, the fact that some recognition methods work better than oth-

rs happens quite at random, and there is no guarantee that the

ame methods always give a similar good verification score. It is

orth reminding that the iris in Fig. 3 has been selected as an ex-

mple of many similar mobile acquisitions in MICHE-I that present

his kind of issues. With a deeper analysis of Table 7 , it is pos-
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Fig. 3. Example of high resolution samples of the same subject, with good contrast and illumination in outdoor and indoor conditions, top left and top right respectively. On 

the leftmost sample, the high level of details produces a significant amount of fake iris features that introduce an unpredictable and unquantifiable bias in the performances 

of all the recognition methods. The bottom line shows the iris segmentations provided by the four methods considered in this study: (a) Barra et al. (b) Abate et al. (c) 

Haindl et al. (d) Yang et al. 
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Table 8 

Mean processing times, including preliminary segmentation, for each method in 

both verification mode and identification mode. 

Segment. Algorithm Recogn. Algorithm Verific. (1:1) Identific. (1:150) 

IS_IS Barra 0.046 s 6.419 s 

Raja < 0.001 s 16.355 s 

Abate 0.080 s 12.889 s 

Santos 0.057 s 7.829 s 

Bird Barra 0.049 s 6.340 s 

Raja 0.001 s 33.728 s 

Abate 0.103 s 15.528 s 

Santos 0.054 s 6.705 s 

Haind et al. Barra 0.049 s 7.378 s 

Raja 0.001 s 26.297 s 

Abate 0.098 s 14.714 s 

Santos 0.067 s 10.654 s 

Yang et al. Barra 0.048 s 7.320 s 

Raja 0.001 s 18.980 s 

Abate 0.070 s 12.460 s 

Santos 0.050 s 6.990 s 
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ible to notice that the segmentation by Haindl et al. produces

he most stable results when adopted by the recognition meth-

ds considered in this study. Although the corresponding verifica-

ion scores are not the optimal ones, the result is interesting be-

ause it further confirms the stability/reliability of this segmenta-

ion method in comparison to the others (see Section 4.2 ). To this

egard, let us observe that the iris mask in Fig. 3 (c), left part, ig-

ores a significant part of the region that is interested by occlu-

ions due to environmental reflections, and, consequently, a lower

mount of fake iris features is included. This justifies the stable

ehaviour of all four recognition methods when the segmentation

y Haindl et al. is used. On the other hand, the removal of occlu-

ions may also cause the removal of true iris patches, and there-

ore also reduces the amount of true iris features, thus possibly im-

acting on the level of verification performances. Notwithstanding

his, Table 7 shows that the verification scores produced when the

egmentation by Haindl et al. is used are, on average, the highest

nes. This confirms that noise reduction always produces a recog-

ition improvement by avoiding the introduction of ambiguous iris

eatures. 

.2. Execution time 

A recognition operation carried out directly on a mobile de-

ice (without the intervention of a remote server) would be mostly

imited to verification cases, with template(s) of a single subject

tored locally. Though having sufficient computational resources,

hich nowadays is still not realistic for large scale applications,

rivacy and security issues would suggest avoiding to maintain

n a mobile device an entire template gallery. Therefore, in case

f identification (1:N matching without any identity assumption),

egmentation and feature extraction could still be carried out lo-

ally, to avoid transmitting the full biometric sample, so preserv-

ng user’s privacy and integrity of the biometric trait. However, af-

er this preliminary step, the acquired probe template would be

ransmitted to a remote recognizer, running either on a desktop

r a server architecture. It is interesting to estimate the execution

ime for an identification operation limited to this case, and to as-

ess if such execution time is linearly related with a single veri-

cation operation, as expected, i.e., if methods are really scalable.

his section reports the average identification time to compare a

robe image versus 150 gallery images. The latter seems a reason-

ble number to estimate the relation between the time required by

 single operation and by a set of similar ones. According to this, it

s possible to measure the level of performance of each segmenta-
ion+recognition method explored in this study. Though randomly

icked, the images used in this experiment grant a wide variety

f conditions (indoor, outdoor, frontal or rear camera, eyeglasses,

akeup, shadows and so on) thus obtaining an overall mean rate

f performance for each method. All images belong to the set cap-

ured by iPhone5 (the device providing images with a median res-

lution among those used). Table 8 reports the time values for

ach segmentation method evaluated. All tests were carried out

n an Intel Xeon X5482 CPU 3,20GH (dual core) 64bit, 10GB RAM.

he pre-processed images resolution is of 400 × 300 pixels for the

ecognition methods by Abate et al. and Santos et al. (which pro-

ess the whole image with the corresponding mask). The normal-

zed irises have 512 × 64 pixels for methods by Barra et al. and Raja

t al., working on the normalized iris only. 

All recognition methods present a quite stable response time

n the verification mode, notwithstanding the adopted segmenta-

ion. However, identification mode causes some interesting differ-

nces in response times that, in this mode, seem to significantly

epend on the segmentation. For instance, the method by Raja

t al. requires a more than double time for identification pass-

ng from IS_IS to BIRD segmentation. While time differences fade

or a single match operation, they become more significant with

arger scale comparisons. It is further possible to observe that the

ethod by Raja et al. is definitely the one providing the short-

st response time in verification, notwithstanding the adopted seg-
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mentation method, while it unpredictably becomes the slowest

one in identification, where the fastest one is, on the average, the

method by Barra et al. 

6. Score level fusion 

This section provides the results obtained by score level fusion

of the recognition results observed for the different methods. Each

experimental session was identified by the pair of capture devices

involved, namely either the same device for probe and test or two

different devices, by the segmentation method, and by the recog-

nition method(s) exploited (either a single one or a score level fu-

sion of the results from a possible subset). Each session produced

a distance matrix that, for each pair of images probe/gallery, con-

tains the corresponding score in terms of dissimilarity (the lower,

the higher the probability that the two irises are from the same

subject). We experimented a multi-expert approach by fusing the

results from all recognition methods considered in this study, or

from subsets of them. This is expected to improve the overall ac-

curacy of the final system, since flaws in one method can be com-

pensated by strengths in another one. In order to perform a proper

fusion of the results at score level , the values returned by the dif-

ferent methods had to be normalized so to fall within in the same

numerical range, typically [0, 1], and be comparable. The min-max

normalization rule was used. Let DM be a distance matrix m × n

containing the dissimilarity scores s between all possible pairs of

the m irises in the probe-set and the n irises in the gallery-set, and

s a score, the normalized score sn is given by 

sn = 

s − min (DM) 

max (D ) − min (D ) 
∀ s ∈ DM. (3)

Two score level fusion strategies were exploited in this study:

the Simple Sum fusion and the Matcher Weighting Fusion . The former

consists in just summing up the scores produced by each method.

Let s i, j, m 

be the score generated by the recognition method m for

the pair of images < i, j > , the simple sum fused score ss i, j is: 

ss i, j = 

M ∑ 

m =1 

s i, j,m 

∀ i, j (4)

where M represents the number of recognition methods whose re-

sults have to be fused. Considering that the distance matrix ob-

tained by the sum of the single scores might be defined in a new

range of values, namely [0, M], a MinMax normalization step is

further carried out on the fused distance matrix in order to work

with a common range of values in [0,1]. 

The Matcher Weighting Fusion makes use of the Equal Error Rate

(EER) achieved by the recognition methods, and assigns a higher

weight to those methods that achieve a lower EER. The weights

are therefore inversely proportional to the corresponding errors of

the methods considered. Let m be the recognition method and e m 

its error, the weight w m 

is calculated as: 

w m 

= 

1 ∑ M 
m =1 

1 
e m 

e m 

(5)

where 0 ≤ w m 

≤ 1 and �M 

m =1 
w m 

= 1 . Once the weights have been

computed, the matcher weighting fused score f i, j becomes: 

f i, j = 

M ∑ 

m =1 

w m 

s i, j,m 

∀ i, j (6)

In this study, four segmentation methods were considered and,

for each of them, the effectiveness of four recognition methods was

compared. In each of these combinations, nine different experi-

mental sessions have been designed either intra- or inter-device

(GS4 vs GS4, GS4 vs IP5 etc), which produced a big amount of
xperimental results even just considering a single recognition

ethod. The score level fusion further significantly increases the

umber of results to consider, due to the implementation of all

ossible fusion schemes, i.e., to the need to consider all the pos-

ible subsets of recognition results. In fact, given a pair of devices

nd a segmentation method, it is possible to exploit any subset

f the four different feature extraction/matching methods, i.e., it is

ossible to fuse at score level the results of any out of the 11 pos-

ible subsets of the matching methods. In order to provide a com-

rehensible view and discussion of the achievements from data fu-

ion, only the most relevant results are presented.( Table 9 ) 

The following tables present the results for individual segmen-

ation methods. Each table reports the triple (DEC, AUC, EER) for

ach of the nine possible combinations of devices, and for the best

wo fusion schemes, using either Simple Sum or Matcher Weight-

ng respectively. By an overall view of fusion results, the improve-

ent achieved by using any of the two fusion strategies is rather

imited. In many cases the AUCs, which is not possible to report

ere for sake of space, are just a little wider than the ones ob-

ained by an execution of Santos et al. algorithm alone. It is possi-

le to appreciate the negligible difference in performance also by

ooking at values in Tables 4 and 5 , that report the results achieved

n the corresponding settings by the single recognition algorithms. 

The first observation that comes out is that the increased com-

uting power required to fuse the output of the algorithms is not

ounterbalanced by a significant improvement in the recognition

ccuracy, and in this sense it is counter-productive. This result also

onfirms that the methods analyzed show a very different and un-

ontrolled behaviour, and that in general a single method achiev-

ng very high and stable performances can alone outperform any

ombination of less accurate methods.( Table 10 ) 

Abate+Santos is the fusion scheme that occurs more frequently

s the best one, confirming the level of performance achieved by

ach one of them. ( Tables 11 and 12 ) 

. Conclusion 

Reliable biometrics on handheld devices has been gaining in-

reasing relevance and represents an extremely challenging appli-

ation for computer vision systems, due to the wildness of the

nvironments and of the unconstrained data acquisition protocols.

his paper has discussed in detail the results of MICHE-I contest,

he first international contest specifically devoted to iris/ocular

ecognition using data acquired from multiple types of handheld

evices. The paper has started by briefly summarizing the MICHE-I

enchmark and the participating algorithms. Afterwards, their ef-

ectiveness and the linear correlation of their results have been

ompared, in order to appreciate the possible improvements due

o fusion techniques. 

It is worth underlining that the performance levels reported in

his paper should not be compared to those achieved by other so-

utions for iris recognition, as the average quality of the data being

sed for the MICHE-I contest is far lower. Instead, the main idea

n MICHE-I was to assess the feasibility of ocular recognition solu-

ions to work in mobile settings, and to provide the first baseline

esults, which could be the basis for further improvements in sub-

equent initiatives. The MICHE-I data acquisition protocol was de-

igned to contain images from indoor/outdoor environments, taken

sing the frontal/rear cameras of various devices and without par-

icular supervision. The resulting data provided the opportunity to

nswer the question: is it feasible to recognize human irises from

resent average mobile devices with a sufficient level of accuracy? . 

As concluding remarks, we note that particular efforts should

e paidto the segmentation/quality assessment phases of the pro-

essing chain, as these phases could reduce data’s heterogeneity.

lso, the use of semantic information (as it is done in periocu-
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Table 9 

Fusion results of the IS_IS segmentation algorithm. 

GS4 IP5 GT2 

FUSION DEC AUC EER FUSION DEC AUC EER FUSION DEC AUC EER 

GS4 SS 

Aba + San 27.887 ± 0.272 

(27.013 −28.225) 

20.880 ± 0.006 

(20.870 −20.893) 

20.213 ± 0.012 

(20.190 −20.236) 

Aba + San 26.389 ± 0.094 

(26.236 −26.597) 

20.813 ± 0.007 

(20.800 −20.828) 

20.264 ± 0.012 

(20.240 −20.285) 

Aba + San 25.384 ± 0.351 

(25.120 −26.535) 

20.906 ± 0.008 

(20.896 −20.926) 

20.158 ± 0.010 

(20.140 −20.176) 

MW Aba + San 27.423 ± 0.242 

(26.699 −27.751) 

20.879 ± 0.006 

(20.869 −20.892) 

20.213 ± 0.012 

(20.187 −20.234) 

Aba + San 26.289 ± 0.096 

(26.134 −26.514) 

20.815 ± 0.007 

(20.803 −20.830) 

20.265 ± 0.012 

(20.239 −20.287) 

Aba + San 25.299 ± 0.341 

(25.089 −26.408) 

20.905 ± 0.008 

(20.893 −20.922) 

20.165 ± 0.007 

(20.152 −20.178) 

IP5 SS 

Aba + San 210.292 ± 1.022 

(26.776 −210.824) 

20.820 ± 0.008 

(20.807 −20.838) 

20.254 ± 0.008 

(20.238 −20.266) 

Aba + San 210.403 ± 1.058 

(27.652 −211.102) 

20.864 ± 0.007 

(20.854 −20.878) 

20.221 ± 0.009 

(20.198 −20.236) 

Aba + San 27.578 ± 0.791 

(25.276 −29.196) 

20.839 ± 0.013 

(20.820 −20.870) 

20.216 ± 0.012 

(20.189 −20.235) 

MW Aba + San 210.834 ± 0.428 

(29.617 −211.576) 

20.821 ± 0.009 

(20.807 −20.840) 

20.257 ± 0.010 

(20.233 −20.270) 

Aba + San 211.164 ± 0.563 

(29.481 −212.082) 

20.864 ± 0.007 

(20.854 −20.880) 

20.219 ± 0.010 

(20.200 −20.236) 

Aba + San 27.922 ± 0.471 

(27.706 −29.421) 

20.836 ± 0.013 

(20.816 −20.866) 

20.215 ± 0.012 

(20.190 −20.233) 

GT2 SS 

Aba + San 

26.130 ± 0.127 

(25.951 −26.388) 20.833 ± 0.009 

(20.819 −20.853) 

20.226 ± 0.012 

(20.202 −20.247) 

Aba + San 

26.396 ± 0.117 

(26.221 −26.639) 20.811 ± 0.010 

(20.794 −20.832) 

20.241 ± 0.009 

(20.220 −20.258) 

Raj + San 24.866 ± 1.097 

(24.399 −28.093) 

20.919 ± 0.008 

(20.908 −20.936) 

20.154 ± 0.015 

(20.125 −20.178) 

MW Aba + San 26.009 ± 0.126 

(25.821 −26.275) 

20.837 ± 0.009 

(20.820 −20.827) 

20.223 ± 0.009 

(20.197 −20.212) 

Bar + San 25.470 ± 0.220 

(25.269 −26.117) 

20.813 ± 0.009 

(20.797 −20.831) 

20.252 ± 0.012 

(20.231 −20.276) 

Raj + San 25.386 ± 0.797 

(24.999 −27.726) 

20.919 ± 0.009 

(20.908 −20.942) 

20.154 ± 0.016 

(20.113 −20.175) 
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Table 10 

Fusion results of the BIRD segmentation algorithm. 

GS4 IP5 GT2 

FUSION DEC AUC EER FUSION DEC AUC EER FUSION DEC AUC EER 

GS4 SS 

Aba + San 27.077 ± 0.206 

(26.870 −27.717) 

20.874 ± 0.006 

(20.864 −20.889) 

20.205 ± 0.006 

(20.187 −20.216) 

Aba + San 

26.107 ± 0.122 

(25.941 −26.378) 20.836 ± 0.007 

(20.826 −20.850) 

20.221 ± 0.008 

(20.207 −20.238) 

Aba + San 26.279 ± 0.237 

(26.031 −27.042) 

20.833 ± 0.008 

(20.818 −20.850) 

20.239 ± 0.009 

(20.217 −20.253) 

MW Aba + San 26.656 ± 0.216 

(26.437 −27.277) 

20.876 ± 0.006 

(20.865 −20.889) 

20.208 ± 0.008 

(20.187 −20.220) 

Aba + San 25.849 ± 0.131 

(25.678 −26.141) 

20.843 ± 0.007 

(20.831 −20.857) 

20.213 ± 0.008 

(20.199 −20.229) 

Aba + San 26.109 ± 0.253 

(25.897 −26.911) 

20.832 ± 0.008 

(20.819 −20.847) 

20.238 ± 0.008 

(20.221 −20.252) 

IP5 SS 

Aba + San 26.244 ± 0.171 

(26.052 −26.734) 

20.807 ± 0.008 

(20.793 −20.823) 

20.264 ± 0.009 

(20.246 −20.281) 

Aba + San 

27.309 ± 0.189 

(26.775 −27.560) 20.832 ± 0.007 

(20.819 −20.847) 

20.224 ± 0.008 

(20.207 −20.238) 

Aba + San 210.110 ± 1.347 

(26.352 −210.919) 

20.796 ± 0.008 

(20.782 −20.812) 

20.257 ± 0.010 

(20.237 −20.278) 

MW Aba + San 26.071 ± 0.195 

(25.860 −26.628) 

20.810 ± 0.009 

(20.796 −20.828) 

20.264 ± 0.008 

(20.246 −20.277) 

Aba + San 26.762 ± 0.189 

(26.240 −27.037) 

20.836 ± 0.007 

(20.825 −20.852) 

20.226 ± 0.008 

(20.208 −20.239) 

Aba + San 210.954 ± 0.503 

(29.100 −211.352) 

20.802 ± 0.008 

(20.789 −20.819) 

20.262 ± 0.009 

(20.245 −20.277) 

GT2 SS 

Aba + San 

26.708 ± 0.114 

(26.532 −26.973) 20.839 ± 0.008 

(20.826 −20.855) 

20.221 ± 0.009 

(20.203 −20.241) 

Raj + San 26.738 ± 0.142 

(26.532 −27.057) 

20.836 ± 0.007 

(20.823 −20.848) 

20.227 ± 0.006 

(20.214 −20.238) 

Aba + San 26.959 ± 0.109 

(26.777 −27.194) 

20.893 ± 0.007 

(20.883 −20.907) 

20.178 ± 0.008 

(20.159 −20.190) 

MW Aba + San 26.448 ± 0.119 

(26.259 −26.717) 

20.842 ± 0.008 

(20.829 −20.861) 

20.229 ± 0.011 

(20.205 −20.246) 

Raj + San 26.797 ± 0.102 

(26.623 −27.008) 

20.844 ± 0.007 

(20.830 −20.856) 

20.226 ± 0.007 

(20.212 −20.239) 

Aba + San 26.643 ± 0.109 

(26.455 −26.886) 

20.898 ± 0.007 

(20.888 −20.912) 

20.174 ± 0.007 

(20.158 −20.186) 
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Table 11 

Fusion results of the segmentation algorithm by Haindl et al.. 

GS4 IP5 GT2 

FUSION DEC AUC EER FUSION DEC AUC EER FUSION DEC AUC EER 

GS4 SS 

Aba + San 

27.388 ± 0.143 

(26.966 −27.631) 20.873 ± 0.006 

(20.864 −20.886) 

20.195 ± 0.008 

(20.181 −20.209) 

Aba + San 

27.277 ± 0.158 

(26.792 −27.525) 20.834 ± 0.007 

(20.823 −20.849) 

20.240 ± 0.006 

(20.228 −20.250) 

Aba + San 

27.313 ± 0.225 

(26.611 −27.595) 20.830 ± 0.006 

(20.818 −20.843) 

20.235 ± 0.007 

(20.221 −20.250) 

MW Aba + San 

27.078 ± 0.155 

(26.661 −27.331) 20.877 ± 0.005 

(20.869 −20.889) 

20.194 ± 0.009 

(20.177 −20.208) 

Aba + San 

27.114 ± 0.184 

(26.565 −27.405) 20.838 ± 0.007 

(20.828 −20.852) 

20.237 ± 0.010 

(20.219 −20.257) 

Aba + San 

27.139 ± 0.265 

(26.415 −27.504) 20.837 ± 0.007 

(20.825 −20.851) 

20.231 ± 0.008 

(20.214 −20.245) 

IP5 SS 

Aba + San 25.961 ± 0.088 

(25.815 −26.113) 

20.809 ± 0.007 

(20.797 −20.822) 

20.264 ± 0.009 

(20.249 −20.283) 

Bar + San 25.426 ± 0.056 

(25.327 −25.550) 

20.856 ± 0.006 

(20.847 −20.869) 

20.217 ± 0.008 

(20.202 −20.232) 

Aba + San 26.828 ± 0.160 

(26.365 −27.026) 

20.802 ± 0.007 

(20.790 −20.816) 

20.269 ± 0.006 

(20.256 −20.280) 

MW Bar + San 25.551 ± 0.068 

(25.433 −25.684) 

20.826 ± 0.006 

(20.816 −20.839) 

20.257 ± 0.005 

(20.247 −20.268) 

Bar + San 25.715 ± 0.069 

(25.598 −25.875) 

20.864 ± 0.006 

(20.855 −20.878) 

20.203 ± 0.008 

(20.190 −20.220) 

Raj + Aba+San 26.455 ± 0.173 

(26.206 −26.942) 

20.809 ± 0.007 

(20.797 −20.822) 

20.271 ± 0.009 

(20.251 −20.284) 

GT2 SS 

Raj + San 26.967 ± 0.215 

(26.528 −27.473) 

20.826 ± 0.008 

(20.813 −20.841) 

20.250 ± 0.007 

(20.236 −20.263) 

Raj + San 

27.109 ± 0.273 

(26.525 −27.697) 20.811 ± 0.008 

(20.797 −20.828) 

20.249 ± 0.008 

(20.234 −20.264) 

Raj + San 210.320 ± 0.329 

(29.993 −211.073) 

20.894 ± 0.005 

(20.886 −20.903) 

20.176 ± 0.005 

(20.165 −20.185) 

MW Aba + San 

27.176 ± 0.139 

(26.969 −27.475) 20.836 ± 0.006 

(20.826 −20.848) 

20.245 ± 0.006 

(20.233 −20.257) 

Raj + San 

27.588 ± 0.178 

(27.341 −28.001) 20.816 ± 0.008 

(20.802 −20.832) 

20.246 ± 0.009 

(20.226 −20.265) 

Raj + San 29.499 ± 0.187 

(29.240 −29.945) 

20.901 ± 0.005 

(20.893 −20.911) 

20.158 ± 0.004 

(20.150 −20.168) 
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Table 12 

Fusion results of the segmentation algorithm by Yang et al.. 

GS4 IP5 GT2 

FUSION DEC AUC EER FUSION DEC AUC EER FUSION DEC AUC EER 

GS4 SS 

Aba + San 

27.219 ± 0.198 

(27.023 −27.805) 20.890 ± 0.005 

(20.881 −20.901) 

20.194 ± 0.009 

(20.172 −20.207) 

Aba + San 26.464 ± 0.139 

(26.276 −26.853) 

20.878 ± 0.005 

(20.870 −20.888) 

20.196 ± 0.006 

(20.185 −20.207) 

Aba + San 

27.129 ± 0.145 

(26.753 −27.375) 20.857 ± 0.006 

(20.847 −20.870) 

20.213 ± 0.007 

(20.198 −20.227) 

MW Raj + San 27.782 ± 0.299 

(27.545 −28.798) 

20.901 ± 0.005 

(20.892 −20.912) 

20.167 ± 0.006 

(20.155 −20.179) 

Aba + San 26.349 ± 0.123 

(26.180 −26.667) 

20.886 ± 0.005 

(20.877 −20.896) 

20.185 ± 0.006 

(20.175 −20.196) 

Raj + Aba+San 

26.915 ± 0.116 

(26.722 −27.177) 20.870 ± 0.005 

(20.860 −20.879) 

20.215 ± 0.010 

(20.194 −20.232) 

IP5 SS 

Aba + San 

26.519 ± 0.192 

(26.218 −27.028) 20.859 ± 0.006 

(20.849 −20.871) 

20.216 ± 0.005 

(20.206 −20.225) 

Aba + San 26.862 ± 0.088 

(26.726 −27.065) 

20.884 ± 0.005 

(20.876 −20.895) 

20.187 ± 0.008 

(20.173 −20.201) 

Aba + San 26.646 ± 0.142 

(26.487 −27.058) 

20.826 ± 0.007 

(20.814 −20.840) 

20.246 ± 0.005 

(20.237 −20.256) 

MW Raj + San 26.398 ± 0.157 

(26.232 −26.782) 

20.866 ± 0.006 

(20.857 −20.882) 

20.215 ± 0.007 

(20.202 −20.229) 

Aba + San 26.447 ± 0.089 

(26.301 −26.632) 

20.888 ± 0.005 

(20.880 −20.900) 

20.195 ± 0.005 

(20.183 −20.204) 

Aba + San 26.523 ± 0.131 

(26.368 −26.906) 

20.833 ± 0.007 

(20.822 −20.848) 

20.233 ± 0.008 

(20.219 −20.248) 

GT2 SS 

Aba + San 27.396 ± 0.278 

(26.575 −27.677) 

20.846 ± 0.005 

(20.837 −20.857) 

20.228 ± 0.006 

(20.216 −20.238) 

Aba + San 

27.520 ± 0.199 

(26.975 −27.812) 20.845 ± 0.005 

(20.836 −20.856) 

20.244 ± 0.006 

(20.232 −20.255) 

Aba + San 27.668 ± 0.287 

(26.802 −27.939) 

20.910 ± 0.004 

(20.904 −20.918) 

20.152 ± 0.005 

(20.144 −20.161) 

MW Raj + San 27.266 ± 0.238 

(26.562 −27.527) 

20.858 ± 0.005 

(20.849 −20.867) 

20.225 ± 0.005 

(20.213 −20.235) 

Aba + San 27.291 ± 0.205 

(26.688 −27.584) 

20.853 ± 0.005 

(20.844 −20.864) 

20.228 ± 0.006 

(20.216 −20.241) 

Raj + San 28.685 ± 0.300 

(27.703 −28.980) 

20.920 ± 0.003 

(20.915 −20.928) 

20.145 ± 0.004 

(20.137 −20.152) 
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ar recognition) could play a role in further improvements in this

echnology. Finally, another obvious requirement will be the col-

ection of massive amounts of labeled data from mobile devices.

hese would enable to implement/evaluate data-driven recognition

trategies in this field, such as the presently extremely popular

eep learning recognition approach. 
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