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Abstract

The growing interest for mobile biometrics stems
from the increasing need to secure personal data and
services, which are often stored or accessed from there.
Modern user mobile devices, with acquisition and com-
putation resources to support related operations, are
nowadays widely available. This makes this research
topic very attracting and promising. Iris recognition
plays a major role in this scenario. However, mo-
bile biometrics still suffer from some hindering fac-
tors. The resolution of captured images and the com-
putational power are not comparable to desktop sys-
tems yet. Furthermore, the acquisition setting is gener-
ally uncontrolled, with users who are not that expert to
autonomously generate biometric samples of sufficient
quality. Mobile Iris CHallenge Evaluation aims at pro-
viding a testbed to assess the progress of mobile iris
recognition, and to evaluate the extent of its present lim-
itations. This paper presents the results of the compe-
tition launched at the 2016 edition of the International
Conference on Pattern Recognition (ICPR).

1. Introduction

Mobile biometric recognition by personal and/or
wearable devices is the most advanced frontier for se-
cure use of data and services. It provides a further ap-
plication for user mobile equipment, which are ubiqui-
tous nowadays. Moreover, it extends the functionality
and capabilities of a traditional biometric identification
systems, by allowing capture of biometric traits in any

place. Captured information can be compared with that
stored either on the device itself, or even within RFID
tags, smartcards or machine readable identification doc-
uments (IDs) for single user verification purposes, or
on a remote server, for identification in a set of relevant
subjects. Mobile devices used for biometric recogni-
tion must incorporate all necessary hardware equipment
and software applications for capturing and processing
data from one or more biometric traits. Moreover, they
must be designed for intuitive operation, especially if
it is not planned to assist users during sample capture.
The captured data must be suitably converted by soft-
ware into digital templates for storage and matching
against other records. Feature extraction, storing and
processing, require non negligible resources. Therefore,
notwithstanding the continuous advances in technology
and resources, transferring all the phases of biometric
processing on a mobile device calls for faster and lighter
procedures, and for more efficient storage.

Iris is a natural candidate for mobile biometric recog-
nition for two main reasons: iris acquisition is little
intrusive, and iris codes are among the less expensive
templates from the storage point of view. As for other
biometrics, even research results regarding related tech-
niques underwent a quick progress, from the pioneer-
ing work by Daugman [1] and Wildes [10], mostly per-
taining controlled settings, to the most advanced use
of deep learning [5], through the recent challenges ad-
dressing iris recognition in less controlled and/or mo-
bile settings [3] [8] . Most current iris recognition sys-
tems still require that subjects stand close to the capture
device (about 1m or less) and look towards it for about
3s. The first iris biometric competitions have relied on
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images acquired in these conditions. Among the most
well-known, we can mention the Iris Challenge Evalu-
ation (ICE) [6]. Proença and Alexandre [7] have rather
tackled the problem of noisy iris recognition.

Even for this biometric trait, techniques targeted at
mobile devices must be suitably adapted to their re-
sources, and call for light processing possibly avoiding
complex mathematical processing (e.g., see [2]).

The aim of the contest Mobile Iris CHallenge Eval-
uation II (MICHE-II), launched in conjunction with
ICPR 2016, was to collect relevant contributions to the
field of mobile iris recognition in both academy and in-
dustry. This paper presents the comparison of the seven
best performing algorithms.

2. The challenge setup

The Noisy Iris Challenge Evaluation (NICE I) ex-
ploited images captured in unconstrained imaging envi-
ronments, to evaluate how noise affects iris segmenta-
tion 1. To this aim, the proposed iris dataset UBIRIS.v2
[9] contains data captured in the visible wavelength, at-
a-distance, namely between 4 and 8m, and on the move
2. The results achieved by participant methods confirm
the major impact that uncontrolled conditions have on
recognition performance. Recognition of visible wave-
length (VW) iris images captured at-a-distance and on
the move with less controlled protocols was the target
of the further NICE II contest [7]. VW images usually
contain much more features than the traditionally used
near infrared (NIR) images, however they are also more
seriously affected by many noisy artifacts, and their pro-
cessing suffers from dark pigmentation.

MICHE-I challenge [3] moved to issues related to
iris acquisition by mobile devices. In this new context,
it is assumed that the subject to be recognized generally
autonomously operate the capturing device. MICHE-
I provided a dataset suitable to assess the performance
of biometric applications related in this specific set up.
Two opposite considerations hold. Capturing accuracy/
quality may be enhanced due to the usually short dis-
tance (the length of a human arm) and the user quite
naturally tends to assume a frontal pose. However, the
quality of the captured image can suffer from possible
lower resolution, motion blur and illumination distor-
tions, caused by both the kind of device and by the lack
of control on user capture operation. These possible is-
sues call for robust detection/segmentation and encod-
ing procedures. It is worth noticing that the accuracy
of the latter is heavily affected by the quality of the for-
mer. The composition of the dataset used for MICHE-II

1http://nice1.di.ubi.pt
2http://nice2.di.ubi.pt/

challenge is basically the same of MICHE-I, with the
addition of new unpublished images to be used mostly
in the competitors ranking process.

2.1. MICHE-II database

The aim of MICHE-I dataset, publicly available to
the scientific community and representing the core of
the still unpublished MICHE-II dataset, is to represent
the starting core of a wider dataset to be collected thanks
to a possible crowd-sourcing approach. This should bet-
ter allow unbiased assessment of cross-demographic ro-
bustness, as well as of cross-device and cross-setting
interoperability of recognition procedures. In particu-
lar, the dataset allows to measure both the ability to
match samples of the same subject acquired with dif-
ferent devices, and in general the ability to handle sam-
ples acquired by devices with different characteristics
without a significant performance degradation. More-
over performances in different illumination conditions
are evaluated. We now detail how MICHE-I dataset
differs from the most popular existing iris datasets.
The Chinese Academy of Sciences collected the first
group of publicly available datasets dealing with iris im-
ages, namely CASIA-Iris, that has been updated from
CASIA-IrisV1 to CASIA-IrisV4 since 2002. Its im-
ages are collected under NIR illumination or synthe-
sized. For these reasons, they cannot be reliably used
for assessing methods entailing mobile acquisition, un-
less NIR sensors get more common in mobile devices
too. Similar considerations hold for images used for
ICE competitions. On the contrary, UBIRIS datasets,
acquired and made available from SOCIA Lab at Uni-
versity of Beira Interior (Portugal), are captured in vis-
ible light and uncontrolled conditions. However, acqui-
sition is carried out by cameras with a better resolution
than average sensors built in mobile devices. MICHE-
I is a dataset of iris images acquired in visible light by
different mobile devices. The key features of the dataset
are: (1) sufficiently large population of users; (2) the use
of different mobile devices for the acquisition; (3) the
realistic simulation of the acquisition process including
different sources of noise; (4) and several acquisition
sessions separated in time. A full metadata annotation
completes the dataset. The subjects involved in data col-
lection were asked to behave as they would do by using
a real system, e.g., subjects wearing eyeglasses could
either choose to remove or keep them. They had to take
self-images of one of their irises, by holding the mobile
device by themselves, with a minimum of four shots for
each camera (two out of three devices were equipped
with two cameras with different resolutions) and acqui-
sition mode (indoor, outdoor). Indoor acquisition was
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affected by various sources of artificial light, sometimes
combined with natural light sources. Outdoor acquisi-
tion was carried out using natural light only. For each
subject only one of the two irises was acquired. Three
kinds of smartphones and tablets were used:
• Galaxy Samsung IV (GS4): Google Android Op-

erating System, CMOS posterior camera with 13
Megapixel (72 dpi) and 2322 × 4128 resolution,
CMOS anterior camera with 2 Megapixel (72 dpi)
and 1080× 1920 resolution;
• iPhone5 (IP5): Apple iOS Operating System,

iSight posterior camera with 8 Megapixels (72
dpi) and 1536 × 2048 resolution, anterior Face-
Time HD Camera with 1.2 Megapixels (72 dpi)
and 960× 1280 resolution;
• Galaxy Tablet II (GT2): Google Android Operat-

ing System, no posterior camera, 0.3 Megapixels
anterior camera with 640× 480 resolution.

As a consequence, the three groups of images have
different levels of resolution, which is one of the fac-
tors that can negatively affect cross-device recognition.
The sources of noise in the MICHE-II dataset include:
(a) reflections caused by artificial/natural light sources,
people or objects in the scene; (b) out of focus; (c)
blur, due either to an involuntary movement of the hand
holding the device, or to an involuntary movement of
the head/eye; (d) occlusions, due to eyelids, eyeglasses,
eyelashes, hair, or shadows; (e) device-specific artifacts,
due to the low resolution and/or to the specific noise
pattern of the device; (f) off-axis gaze; (g) variable il-
lumination; and (h) different color dominants. The lack
of precise localization and of fixed distance in the cap-
ture (both images containing well centred eyes and im-
ages containing half faces are present in dataset), re-
sult in variable sizes of the region useful for recogni-
tion. This is typical of mobile captures performed by
the users, which are usually neither too close nor at
arm-length. This introduces further difficulties, since
eye localization must be performed in a pre-processing
step. In some cases, the resulting size of the iris region
is smaller. In other cases, it is possible to exploit the fur-
ther possibilities offered by an extended periocular re-
gion. The dataset has been collected during several dif-
ferent data acquisition sessions separated in time. The
time elapsed between the first and second acquisition
of a subject varies from a minimum of two months to
a maximum of nine. At present, MICHE-I contains
images from 75 different subjects, with 1297 by GS4,
1262 images from IP5, and 632 images from GT2.

The XML annotations associated to each image con-
sist of the following tags:
• filename: the name of the image to which the XML

file refers; it is composed according to a conven-

tion allowing to quickly find the desired image;
• img type: the trait captured in the image, since face

images will be included soon in the dataset;
• iris: indicates which iris was acquired (right, left

or both when the image contains both irises);
• distance from the device: distance of the user from

the acquisition camera, measured to provide a fur-
ther assessment information;
• session number: the number of the acquisition ses-

sion when the image was captured;
• image number: image ordinal number;
• user: identification number of the subject, together

with age, gender and ethnicity;
• device: contains all information about the capture

device: type, name, camera position (front or rear),
resolution and dpi;
• condition: information about capture conditions:

location, illumination;
• author: the XML le also contains the name of the

laboratory/institution who made that acquisition.
The XML file structure allows a quick and reliable re-
trieval of any image as a function of any one of the
above parameters.

MICHE-I is the dataset provided to participants to
MICHE-II challenge. In addition, further sequestered
images with similar characteristics were captured and
used to evaluate the final ranking. The complete
MICHE-II dataset will be soon available to the research
community 3.

2.2. The common segmentation algorithm

According to a policy established by NICE-I and
NICE-II competitions the problem of iris recognition
was tackled by two separate challenges: MICHE-I dealt
with the problem of segmentation of iris images ac-
quired by mobile devices, and the following MICHE-
II started from the best segmentation algorithm as a
fair preliminary processing step to feed the following
phases of feature extraction and classification. This al-
gorithm, by Haindl et al. [4], was provided to all com-
peting groups registered for the challenge, in order to
get an unbiased comparison. It is focused on the detec-
tion of the non-iris components inside the parametrised
iris ring. The procedure starts by detecting reflections,
and then applies form-fitting techniques that enable to
find a parametrisation of the pupil. Next, data is con-
verted into the polar domain, where texture analysis de-
termines the regions of the normalized data that should
not belong to the iris, according to a Bayesian paradigm.
The MICHE-II competitor methods start from the seg-
mentation produced.

3http://biplab.unisa.it
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2.3. Performance evaluation

The competitors were left free to choose any distance
measure, given that it was at least semi-metric. In more
detail, the dissimilarity score chosen by each competitor
is meant as the probability that two irises are from two
different subjects. The higher is the dissimilarity, the
higher is the probability that the two irises are not from
the same person. Let I be set of images from MICHE-II
database, and Ia and Ib ∈ I , the dissimilarity function
D must be defined as:

D : Ia × Ib → [0, 1] ⊂ R (1)

and satisfy the following properties:
1. D(Ia, Ia) = 0
2. D(Ia, Ib) = 0→ Ia = Ib
3. D(Ia, Ib) = D(Ib, Ia)

Each submitted algorithm has to fill a dissimilarity ma-
trix among input probe and gallery sets. A possible bias
implied by embedding special processing into the algo-
rithms to improve performance is avoided by the com-
petition procedure itself, since new images were added
and new distance matrices were computed in order to
create the final rank. Distance matrices produced by
each methods were used to compute the usual Figures
Of Merit (FoM) to rank them, namely Recognition Rate
(RR) for identification, and Receiver Operating Char-
acteristic (ROC) curves, in particular the Area Under
Curve (AUC), for verification.

3. Summary of Competitor Algorithms

Rank 1 - Nasir Uddin Ahmed, Slobodan Cvetkovic,
Md. Erfanul Hoque Siddiqi, Andrey Nikiforov and
Ilia Nikiforov participated the challenge with the algo-
rithm with label tiger_miche. Iris biometric match-
ing is performed using a combination of a popular iris
code approach and a periocular biometric based on the
Multi-Block Transitional Local Binary Patterns (LBP).
The authentication scores are calculated separately, and
the results are combined to improve the system perfor-
mance. The proposed algorithm uses a score-level fu-
sion. The scores from periocular matching and iris code
Hamming distance are combined together to produce a
final score. The matchers produce outputs in different
ranges, with very different score distributions. There-
fore, z-score normalization is used.

Rank 2 - The algorithm with label Bata was sub-
mitted by Zhou Shujuan. The pre-processing phase en-
tails local histogram equalization to enhance iris tex-
ture. As a first step, a 1D feature F = (f1, f2, . . . , f64)
is computed by using the normalized and equalized

512 × 64 pixel gray scale image, which is obtained by
summing up row values to obtain single values. Then
the algorithm takes 64 × 8 fixed sample points in the
normalized iris image, and calculates 2D Gabor wavelet
coefficients on 5 frequencies and 8 directions for each
sample point, therefore obtaining 40 complex numbers,
stored in a binary array of 80 bits for each sample point.
Eye image is extracted using the iris mask and is nor-
malized to 100 × 150 pixel size . Then, LBP features
are calculated in this eye image. The final matching of
two iris images is obtained by combining the similari-
ties measures obtained, namely Hamming distance for
both binary arrays and LBP, and cosine distance for 1D
features.

Rank 3 - Karan Ahuja, Rahul Islam, Ferdous Barb-
huiya and Kuntal Dey presented the algorithm with la-
bel karanahujax. They proposed a baseline model,
namely Root Scale-Invariant Feature Transform (SIFT),
and two stacked convolution-based deep learning mod-
els (Convolutional Neural Networks - CNNs), for iden-
tifying a given individual from a periocular image. This
was obtained by training the CNNs on a given set of pe-
riocular images as part of the learning phase, and veri-
fying a pair of images during the testing phase. The two
convolution-based models for verifying a pair of peri-
ocular images containing the iris are compared amongst
each other as well as with the baseline model. In the first
approach, deep learning is implemented in an unsuper-
vised manner. The method uses a stacked convolutional
architecture, using external models learned a-priori on
external facial and periocular data, on top of the base-
line model applied on the provided data. Afterwards
different score fusion models are applied. In the second
approach, the authors again use a stacked convolution
architecture, but the feature vector is learned in a super-
vised manner.

Rank 4 - The algorithm with label irisomwas sub-
mitted by Fabio Narducci, Silvio Barra, Luigi Gallo and
Andrea Abate. It combines simple image processing
techniques, like contrast enhancement and histogram
adjustment, with unsupervised learning by Self Orga-
nizing Maps (SOM). The algorithm first composes the
original image in polar coordinates with the segmenting
mask, to discard all non-significant pixels in the sur-
rounding of the iris. A SOM network is then config-
ured and trained with pixels of the pre-processed image
thus building the feature matrix that clusters the iris pix-
els. The SOM network is fed with RGB triples together
with local statistical descriptors. These are kurtosis and
skewness, which are computed at pixel level in a neigh-
borhood window of 3x3 size. The output of the network
is a feature map representing the activation status of the
neurons for each pixel. Such a map represents, in other

152



terms, the cluster decomposition of the image which
projects the problem of iris recognition onto a lower di-
mensional space. On the obtained feature maps, the al-
gorithm computes the Histogram of Gradients (HOG),
which is finally used as a feature vector representing the
subject iris. To verify the subject identity, the Pearson
coefficient in [0,1] real interval is used, to measure the
correlation between the two images. The Pearson cor-
relation is used as the probability that the two irises are
from the same subject.

Rank 5 - The algorithm proposed by Chiara Galdi
and Jean-Luc Dugelay has label FICO_matcher. Its
key features are: (i) the use of a combination of classi-
fiers exploiting the iris colour and texture information;
(ii) its limited computational time, particularly suitable
for fast identity checking on mobile devices; (iii) the
high parallelism of the code, making this approach also
appropriate for identity verification on large database.

Rank 6 - The algorithm with label otsedom was
submitted by Naiara Aginako, José María Martínez-
Otzeta, Basilio Sierra, Modesto Castrillón-Santana and
Javier Lorenzo-Navarro. It exploits both Machine
Learning paradigms, and Computer Vision techniques.
Descriptors are obtained by well known approaches,
such as LBP, LPQ, and WLD. They are used individ-
ually in order to construct a classifier, and then some
of them are combined to outperform the obtained ac-
curacy. The final algorithm combines the best five de-
scriptors to obtain a dissimilarity measure of two given
iris images. Machine Learning classifiers have ben used
to perform the classification, and hence to obtain the a-
posteriori probability distribution for each of the two
iris images. Histogram distance between the two distri-
butions is used to compute the dissimilarity. To perform
the final classifier combination, five different classifiers
are used, each of one giving a different a-posteriori dis-
tribution for each image. The mode of each a posteriori
probability for each class value is used to combine the
five classifiers, and the distance of the two mode his-
tograms (one for each iris) is used as dissimilarity mea-
sure.

Rank 7 - Naiara Aginako, José María Maqrtínez-
Otzeta, Igor Rodríguez, Elena Lazkano and Basilio
Sierra submitted the algorithm with label ccpsiarb.
Even in this case, the proposed approach is a combi-
nation of image transformations and classification, us-
ing techniques both from Machine Learning and Com-
puter Vision. First, an image classification process is
carried out in order to be able to classify the images
as belonging to one of those which are defined in a
given set of classes. This step involves both Machine
Learning paradigms, in order to perform the classifica-
tion itself, and image transformations from the Com-

puter Vision area in an intent to improve the accuracies
of the obtained models. As classifiers the authors use
some well known ML supervised classification algo-
rithms, with completely different approaches to learn-
ing, and a long tradition in different classification tasks:
IB1, NaiveBayes, Random Forest and C4.5. After sev-
eral experiments with a combination of different image
transformations and Machine Learning algorithms, the
Edge transformation followed by IB1 classification has
shown the best results. As a novelty, the dissimilarity
computation between two images has been computed as
an a-posteriori histogram difference of the classes dis-
tribution returned by the Machine Learning algorithm.

4. Summary of competition results

This section summarizes the main results obtained
from the comparison of participating methods. Table 1
reports the final rank list, including the best performing
version among the ones submitted for each author. The
ranking has been obtained by averaging the Recognition
Rate (RR) and the Area Under Curve (AUC) achieved.

Results were achieved with Probe and Gallery con-
taining all sequestered images from MICHE-II with the
addition of random images from the public set. The
test set contains a total of 60 images for each set (IP5
and GS4). Both sets only included images from front
cameras, with IP5 images captured indoor and GS4 im-
ages captured outdoor. The table accounts for both
the total of 3600 matching operations, in the column
ALLvsALL, and for the results achieved by homoge-
neous sets of images, in the columns IP5vsIP5 and
GS4vsGS4. Actually, ALLvsALL presents quite de-
graded performance due to the double cross-matching
carried out by some operations, that involve images cap-
tured with both different devices and in different set-
tings (indoor vs. outdoor). It is interesting to notice
that, notwithstanding the lower resolution of front cam-
eras with respect to posterior ones, the performance
degradation is less dramatic than expected. It is also
interesting that, notwithstanding the lower resolution
of IP5 front camera, the results obtained in IP5vsIP5,
with images captured indoor, are much better (except
for otsedom) than those obtained in GS4vsGS4, with
images captured outdoor. This confirms that resolution
and ambient conditions are complementary factors af-
fecting iris recognition. This especially holds when im-
ages are captured by mobile devices, since conditions
are less controlled and unpredictable. Figure 1 shows
the ROC curves obtained in the three settings, and visu-
ally confirms the observed considerations.
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Table 1. Final ranking of ICPR-MICHE-II competition
Rank Algorithm ALLvsALL GS4vsGS4 Ip5vsIP5 Final Rank

1 tiger_miche 0.99 1.00 1.00 1.00
2 Bata 0.98 0.98 1.00 0.99
3 karanahujax 0.89 0.89 0.96 0.91
4 irisom 0.79 0.82 0.88 0.83
5 FICO_matcher 0.77 0.78 0.92 0.82
6 otsedom 0.78 0.80 0.78 0.79
7 ccpsiarb 0.75 0.72 0.77 0.75
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Figure 1. ROC curves obtained by the competitor methods in the three settings.

5. Conclusions

MICHE-II challenge at ICPR aimed at assessing the
present status of iris recognition on mobile devices in
Visible Light conditions. Recent smart devices allow
to capture images in NIR spectrum, that in general al-
lows to achieve better performance. In fact, illumina-
tion conditions play a less critical role and dark irises
are better processed. However, problems that are typical
of mobile uncontrolled image capture, e.g., significant
off-axis or bad eye framing, as well as cross-condition
issues, would hold even with NIR approaches. Clearly,
mobile iris recognition is still not able to achieve the
same results of desktop based one, especially if the
whole processing must be carried out on the device it-
self. However, achieved results are encouraging, and
suggest further research.
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