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”A Leopard Cannot Change Its Spots”: Improving
Face Recognition Using 3D-based Caricatures
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Abstract—Caricatures refer to a representation of a
person in which the distinctive features are deliberately
exaggerated, with several studies showing that humans
perform better at recognizing people from caricatures
than using original images. Inspired by this observa-
tion, this paper introduces the first fully automated
caricature-based face recognition approach capable of
working with data acquired in the wild. Our approach
leverages the 3D face structure from a single 2D image
and compares it to a reference model for obtaining
a compact representation of face features deviations.
This descriptor is subsequently deformed using a ’mea-
sure locally, weight globally’ strategy to resemble the
caricature drawing process. The deformed deviations
are incorporated in the 3D model using the Laplacian
mesh deformation algorithm, and the 2D face cari-
cature image is obtained by projecting the deformed
model in the original camera-view. To demonstrate
the advantages of caricature-based face recognition, we
train the VGG-Face network from scratch using either
original face images (baseline) or caricatured images,
and use these models for extracting face descriptors
from the LFW, IJB-A and MegaFace datasets. The ex-
periments show an increase in the recognition accuracy
when using caricatures rather than original images.
Moreover, our approach achieves competitive results
with state-of-the-art face recognition methods, even
without explicitly tuning the network for any of the
evaluation sets.

Index Terms—Face Recognition, 3D Caricature Gen-
eration, Caricature-based Face Recognition, Facial Fea-
ture Analysis.

I. Introduction

HUMANS have an astonishing capability of recogniz-
ing familiar faces in totally unconstrained scenarios.

However, this performance decreases significantly in case
of unfamiliar faces [1]. The question of how an unfamiliar
face becomes a familiar face is not consensual, but there is
evidence that this process is carried out in a caricatured
manner [2], [3]. According to this theory, familiarization
works by analyzing the most significant physical devia-
tions of a face with respect to a mental representation
of the average face, followed by the creation of a modified
description of the face, where the most distinctive features
are exaggerated and average features are oversimplified
(similar to drawing a caricature). Moreover, different stud-
ies concluded that humans perform better at recognizing
individuals from caricatures [4], [5], [6], [7] than veridical
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Fig. 1. Advantages of using caricatures for face recognition.
Both humans and automated systems find difficult to distinguish
between visually similar subjects (e.g., Katy Perry and Zooey De-
schanel). Familiarized observers overcome this problem by focusing
on the most distinguishable features of each face, and several studies
suggest that this task is carried out in the brain by creating a
caricatured representation of the original image. Our method aims
at mimicking this process by analyzing face proportions and exag-
gerating the most salient ones. The proposed approach is capable of
producing 2D caricatures where inter-subject similarity is minimized
and intra-subject similarity is preserved.

faces, supporting the idea that the human brain encodes
familiar faces as a caricatured version of the original face.

Inspired by the idea that distinctive feature exagger-
ation may be the key for the incredible performance of
humans on recognizing familiar faces, we introduce a
fully automated face recognition approach based on a
3D caricature generation method capable of creating 2D
face representations, where likeness is preserved and the
inter-class separation is enlarged. The rationale behind our
idea is illustrated in Fig. 1, where an unfamiliar observer
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perceives incorrectly Fig. 1a) and Fig. 1b) as photos from
the same identity. On contrary, it is straightforward to
discern between Katy Perry and Zooey Deschanel when
observing their caricatures.

For automated caricature generation, the proposed
method attempts to mimic the three main stages of the
caricature drawing process:

1) Caricaturists infer 3D face structure from
either a single or multiple views of the face.
This phase is replicated by estimating a 3D mor-
phable model from an input image and a set of
facial landmarks. The accuracy of the landmarks
decreases significantly in unconstrained data, and
for that reason, we combine multiple state-of-the-
art landmark localization algorithms in an ensemble
learning strategy. In addition, we use a model with
a reduced number of vertices to account for model
stability while maintaining the dominant features of
the face.

2) The caricaturist analyzes facial features for
determining the deformation applied to each
one. After inferring the 3D structure, our method
compares a set of face regions with a reference 3D
model regarding translation, scale and orientation.
The region deviations are then normalized and ex-
aggerated using a ’measure locally, weight globally’
strategy.

3) The artist redraws the original face using the
deformed proportions. After determining the po-
sitions of the deformed vertices, the mesh is warped
with a Laplacian mesh editing technique for preserv-
ing local detail and guaranteeing smooth transitions
between vertices. The final 2D caricature is obtained
by projecting the 3D model in the original camera-
view.

In the learning and classification phase, we replicate the
strategy introduced in [8] but using caricatures rather than
veridical face images. Accordingly, the VGG-Face architec-
ture is trained from scratch on caricatures automatically
generated from the VGG dataset, whereas the features
produced by the ’fc6’ layer are used as face descriptor.

The performance of the proposed face recognition ap-
proach is assessed on three state-of-the-art face recognition
datasets (LFW [9], IJB-A [10], and MegaFace [11]). To
demonstrate the improvements due to the use of carica-
tures, we measure the relative performance between using
caricatures and using original images for network training.

In summary, this paper has two major contributions: 1)
a 3D-based caricature generation method for producing
2D caricatures that enhance the performance of face
recognition; and 2) the first fully automated caricature-
based face recognition approach capable of working in
real-time with data acquired in the wild.

The remainder of this paper is organized as follows:
Section II summarizes the most important approaches for
generating caricatures from 2D images, and the works
addressing caricature-based face recognition. Section III

provides a detailed description of the proposed method.
In Section IV, we discuss the obtained results and the
conclusions are given in Section V.

II. Related Work
The internal process behind recognizing faces has been

studied extensively during the last decades [4] and several
studies suggest that the brain encodes faces with respect
to a general face prototype [12]. Also, for encoding, the
brain emphasizes the most deviated physical traits and
disregards average features, contributing to increase the
inter-class separation while retaining the stability of intra-
class separation. These results explain why humans can
recognize better caricatures than veridical faces [7], [4]
and indicate that, in fact, the brain encodes faces in a
caricatured manner [13]. These findings evince that auto-
mated face recognition may also benefit from the use of
caricatures. However, few works have exploited this idea,
and to the best of our knowledge, this paper introduces
the first fully automated caricature-based face recognition
system. Below, we review the existing approaches for
generating caricatures from 2D images, and caricature-
based face recognition methods.

A. Caricature Generation
Creating face models in a caricatured style is a popular

topic in computer graphics and can be broadly divided in
two families: 1) rule-based approaches; and 2) example-
based approaches.

Rule-based approaches amplify the divergence between
a probe face and a reference face by modifying the point-
to-point distance of a set of fiducial points marked on
both images. The first representative work of this family
used 165 feature points to control deformations [14]. Liao
et al. [15] introduced an automated caricature generation
method that detects and analyzes facial features without
human assistance. In [16], the normalized deviation from
the average model was used to exaggerate the distinctive
features, while Tseng et al. [17] used the inter and intra
correlations of size, shape and position features for exag-
geration. These works are 2D-based and most of them pro-
vide semi-automated systems that depend on user input
to define the regions to be deformed. With the advent of
3D face databases, 3D-based caricature generation became
the most popular approach. Lewiner [18] introduced an
innovative 3D caricature generation tool by measuring
the face deviations in the harmonic space. Clarke et
al. [19] proposed an automatic 3D caricature generator
based on a pseudo stress-strain model for representing
the deformation characteristics at each feature point. Sela
et al. [20] introduced a general approach for deforming
surfaces based on the local curvature.

Data-driven approaches learn a mapping between the
features of original face images to its corresponding car-
icature [21]. Liu et al. [22] proposed a machine learning
method to map 2D feature points detected in face images
to the coefficients of a PCA model learnt from a dataset of
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Fig. 2. Overview of the processing chain of the proposed method. The 3D face structure of probe images is inferred by a 3DMM
method coupled with a set of automatically detected facial landmarks. This three-dimensional model permits the replication of the caricature
drawing process by: 1) measuring the deviation of face regions to a reference prototype; and 2) using a ’measure locally, weight globally’
strategy for inferring the exaggeration of each region. Using the modified regions as constraints, the original mesh is deformed with the
Laplacian mesh editing algorithm, and the 2D caricature is obtained by projecting the deformed model in the original camera-view. At the
end, the caricature is passed through a CNN to obtain a caricature-based face descriptor.

200 3D caricature models. Han et al. [23] introduced the
first system capable of creating 3D face caricatures from
2D sketches by training a CNN with 2D sketches and the
corresponding subspace of 3D shape and expression vari-
ations. For a detailed description of automated caricature
generation refer to the survey of Sadimon et al. [24].

B. Face Recognition
The performance of face recognition in the wild has

significantly increased, mainly due to the advent of deep
learning [25]. Nevertheless, the majority of face recognition
approaches focused on improving performance via new
learning strategies, augmenting training data or learning
an embedding in the descriptors space, instead of adjusting
the input data to a more suitable representation to ad-
dress this problem (e.g., using face caricatures). Regarding
caricature-based face recognition, there is limited work in
the literature. Klare et al. [26] used qualitative features
from face images and the corresponding caricatures to
train a logistic regression model that predicted the simi-
larity score between a caricature and a photo. However,
these features were manually annotated via Amazon’s
Mechanical Turk, restraining the usability of this approach
in a real-world scenario. Abaci and Akgul [27] proposed
a method to automatically extract facial attributes from
photos, but the attributes of caricatures were manually
labeled. On contrary, Ouyang et al. [28] introduced a
completely automated approach to match photos with
caricatures by using a classifier ensemble for estimating
facial attributes in both domains.

III. Proposed Method
For comprehensibility, we use the following notation:

matrices are represented by capitalized bold fonts, vec-
tors appear in bold, and subscripts denote indexes. The
proposed method is divided in six main phases, which are
depicted in Fig. 2 and define the structure of this section.

A. Landmark Localization
The localization of facial landmarks is a key step in

the 3DMM phase of our approach. Besides, spurious land-

marks affect significantly the likeness of the caricature, as
the inferred 3D face structure does not portray correctly
the facial features of the subject. Despite the astonishing
increase in performance of landmark localization algo-
rithms, the localization of landmarks in totally uncon-
strained data remains an open problem. For this reason,
we combine k state-of-the-art landmark localization algo-
rithms [29], [30], [31], [32] in an ensemble strategy for pre-
dicting the most accurate set of landmarks obtained from
these methods. Let q = [x1, y1, · · · , xν , yν ]T be a vector
with the locations of ν face landmarks in a 2D image, and
Q = [q(1), · · · ,q(k)] the matrix with the locations of the
facial landmarks of k distinct landmark localization meth-
ods. Assuming that the k landmark localization methods
produce uncorrelated outputs, the way they correlate in a
particular image may provide insight about the correct set
of landmarks, i.e., methods producing landmarks in very
close locations are more likely to be correct. Accordingly,
the output of the landmark localization algorithms is used
to obtain Q(i), i ∈ {1, · · · , N} for N annotated images,
and for each image, the vector ŷ(i) ∈ {0, 1}k is determined
by:

ŷ(i)
j =

{
1 if |q

(j)−g(i)|
d(i) < ε

0 otherwise,
(1)

where g(i) and d(i) are the manually annotated land-
marks, and the inter-ocular distance for the ith image,
respectively, whereas ε is a hard threshold controlling the
maximum amount of inter-ocular distance that a set of
landmarks q can differ from the ground truth. Each binary
vector ŷ(i) denotes the methods that produced the correct
landmarks for the ith image, and the vectors of all training
images are used to infer the function Ψ : Nk×n 7→ {0, 1}k
by minimizing the following loss function:

N∑
i=1

∥∥∥Ψ(Q(i); W)− ŷ(i)
∥∥∥

2
, (2)

where W are the weights of the neural network used
for inference. Given a probe image and the respective
landmarks of the k landmark localization methods, y =
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Ψ(Q; W) provides the likelihood of each method being
correct, and we choose the landmarks of the method with
maximum likelihood.

B. 3D Morphable Model
Blanz and Vetter introduced the 3D morphable models

for the synthesis of 3D faces [33]. The main insight behind
this approach is assuming that any face can be constructed
using a linear combination of M registered face models. A
face is represented by a vector s(o) ∈ R3N and a vector
to ∈ R3N , containing the x, y and z components of the
shape, and the RGB color information, respectively. N is
the number of mesh vertices. Considering the correlation
between the components of so, each face is actually rep-
resented in a more compact version using the principal
components (PC) of the shape and texture space, denoted
by s and t, respectively. Given a set of shape exemplars
S = {s1, ..., sM} and texture exemplars T = {t1, ..., tM},
a new fitted model (sf ,tf ) is expressed as:

sf =
M∑
i=1

αi.si +
K∑
j=1

λj .bj tf =
M∑
i=1

βi.ti, (3)

where α and β are vectors with the weights assigned
to each exemplar, whereas B = {b1, ...,bK} is a set of
deviations components of K different facial expressions
and λ is the vector with the weight of each expression.

Given this, the estimation of the 3D face surface corre-
sponds to the inference of the variables α, β and λ. Dif-
ferent strategies have been proposed for this purpose [34],
[35], but in our case we opt for using the method of Huber
et al. [36] available in the eos library 1. This methodology
works in two steps. The first step infers the camera matrix
P that matches the pose of an average 3D model with
the observed pose in the image, whereas the second step
adjusts α and λ to recover the shape of the 3D model.
While α provides information about the face structure,
λ describes the expression observed in the current face
image. The inference is carried out by minimizing the
following energy function:

E =
∑
k=1
|qk − pk|, (4)

where q is a set of 2D landmarks, and pk is the projected
position of the vertex corresponding to the kth landmark
determined by pk = P.sf . As described in [36], the cost
function in (4) can be brought into a standard linear least
squares formulation, allowing to recover both α and λ. Re-
garding tf , it is automatically obtained from the original
image, making unnecessary the inference of β. Considering
that non-neutral facial expressions affect the exaggeration
inference phase and produce distinct caricatures for the
same individual, we reset the λ vector to guarantee that
the fitted model is always in a neutral expression.

1https://github.com/patrikhuber/eos

HPEN[38] (v = 53490) EOS[36] (v = 3448)

Fig. 3. Examples of 3D models obtained by different 3DMM
methods in low-resolution data. The use of low-resolution data
hinders the process of recovering the latent parameters of the 3D
model, particularly when using dense models. The comparison be-
tween HPEN (a common 3DMM method coupled with a dense
model) and EOS (3DMM particularly adapted for low-resolution
data coupled with a sparse model) evidences two major drawbacks
of the first approach: 1) the models do not correspond to the face
structure of the subject; and 2) they are not consistent in data of the
same individual.

In equation (4), the number of landmarks plays an
important role in the detail of the recovered 3D model.
However, in the case of low-resolution images, the correct
localization of some face landmarks may be hard to judge,
decreasing the usefulness of using a dense set of landmarks.
For this reason, the use of a common subset shared
by [29], [30], [31], [32] (68 landmarks) does not significantly
impacts the detail of the fitted model.

Regarding the 3D model used, we opted for using the
Surrey Face Model [36] (a sparse 3D model with 3,448 ver-
tices) instead of the commonly used Basel Face Model [37]
with 53,490 vertices. The rationale for this choice is
twofold: 1) images acquired in totally unconstrained sce-
narios increase the likelihood of spurious landmarks, which
in turn may induce aberrations in isolated parts of models
with many degrees of freedom (as illustrated in Fig. 3); and
2) the computational cost of the minimization algorithm
increases significantly with number of vertices, and the
proposed method is intended for real-time applications.

C. Exaggeration Inference
The correct assessment of which facial features should

be exaggerated is the key for drawing recognizable car-
icatures. This process occurs internally in the human
brain and is commonly accepted that is guided by the
comparison to a reference model [39] or average model [40],
which in our case is the Surrey Face Model.

Let π = [x, y, θ, s] be the attributes of a face region,
where (x, y) is the mass center in the frontal model version,
θ is the region orientation in the xy-plane and s the
region size. r = [π(1), ...,π(n)] is the vector obtained by
concatenating the attributes of n face regions, whereas r(f)

defines the concatenation of the regions of the reference
model chosen for our experiments (described in section
III-B). The comparison between an exemplar model and
the reference model is determined by r′ = r − r(f), the
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Fig. 4. Schematic representation of the exaggeration inference phase. The key for drawing recognizable caricatures is the correct
assessment of the exaggeration degree that should be applied to each facial feature. Aiming at replicating the internal brain process that guides
caricature drawing, we proceed by measuring the differences between the attributes of the inferred model and a reference model, followed by
standardizing these deviations using z-score normalization. The normalized deviations are subsequently deformed using a ’measure locally,
weight globally’ strategy, allowing to determine the exaggeration degree of each attribute not only by its the individual deviation but also
from its global importance in the face context.

element-wise difference between r and the corresponding
regions of the reference model r(f). The difference operator
	 between regions is defined as:

π(1)	π(2) = {x(1)−x(2), y(1)−y(2), θ(1)−θ(2),
s(1)

s(2) }. (5)

The vector r′ is a compact description of the differences
between a face and a reference model. However, each
component is derived from attributes with distinct scales
and variances. As such, we normalize r′ using the standard
score:

zi = r′i − µi
σi

, (6)

where µi and σi are the sample mean and sample
standard deviation of the ith attribute (estimated from the
training data). This normalization provides a comparable
description of how each attribute deviates from the mean.

We believe that a very similar representation is inferred
internally by caricaturists [41], and that they exploit it for
emphasizing the most distinguishable features of the whole
face in a holistic manner, i.e., determine the exaggeration
degree of each feature not only by its the individual
deviation but also from its global importance in the face
context. Inspired by this observation, we introduce a two-
step process for inferring the exaggeration degree of the
normalized deviation of each attribute.

The proposed inference strategy works in a ’measure
locally, weight globally’ manner. In the ’measure locally’
phase, the exaggeration level of each region is determined
without taking into account the exaggeration level of other
regions. In the ’weight globally’ phase, the exaggeration
levels are weighted by their importance in whole face. The
formal definition of each phase is provided below.

In the ’measure locally’ step, the maximum displace-
ment in the normalized space ∆◦z is individually deter-
mined by applying a transfer function to the cumulative
probability of zi (denoted by Φµi,σi(zi)):

∆◦zi = κ log(
Φµi,σi(zi)

1− Φµi,σi
(zi)

)− zi, (7)

where κ is a parameter controlling the level of exaggeration
applied to each attribute.

In the ’weight globally’ step, the relative importance of
each attribute is determined by measuring the absolute
distance of zi to the mean of the observed attributes (z̄i),
and the weight of each attribute is given by:

γi = |zi − z̄i|∑
i=1 |zi − z̄i|

. (8)

Both steps are then combined to produce the deformed
deviation in the normalized space:

◦zi = zi + γi∆
◦zi. (9)

Fig. 4 provides a summary description of the proposed
deformation inference process.

Recovering the regions attributes from the deformed
deviations ◦z is attained by reversing the normalization
process:

◦ri = (◦zi.σi + µi)⊕ r(f)
i , (10)

where ⊕ is the sum operator between regions. At the
end, the 3D position of the region vertices is adjusted to
comply with new region properties, i.e., regarding π(x),
π(y), and π(θ) the vertices are simply translated or rotated,
whereas for π(s) the position of each vertex is adjusted by
the vector πs(vi − v(f)

i ), being vi and v(f)
i the vertices

of the ith region in the observed and reference model,
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respectively. The updated 3D positions of the vertices
of each region are then stored in u and used for model
deformation.

D. 3D Model Deformation
Given the updated positions of the face regions ver-

tices, it is necessary to deform the mesh to satisfy these
constraints. The deformation applied should, at the same
time, comply with the constraints and preserve local de-
tails, i.e., produce smooth deformations by varying the
position of each vertex with respect to its neighbors.
Laplacian mesh editing [42], [43] is a classical algorithm
to address this problem. In our approach, we used the
implementation of the Laplacian mesh editing algorithm
available in the Matlab Mesh Toolkit 2. The model given in
the right side of Fig. 4 depicts a deformed mesh obtained
with the Laplacian mesh editing algorithm, where can be
observed the smoothness of the deformation.

E. Caricature Synthesis
The synthesis of the 2D caricature in the original pose

is achieved by projecting each vertex with the camera
parameters previously determined in the 3DMM phase.
For maintaining the original image resolution, we adapt
the number of vertices using interpolation.

F. Feature Encoding and Matching
After generating the caricature from a veridical photo,

the VGG-Face architecture is trained to identify indi-
viduals from caricatures (refer to Section IV-B for fur-
ther details). Feature encoding is attained using the
learned filters, and caricatures are described by the 4096-
dimensional features produced in the ’fc6’ layer of the
VGG-Face architecture. During the matching phase, the
L2 distance between the descriptors is used as dissimilarity
score.

IV. Results and Discussion
For experimentally validating our approach, we had

four major goals: 1) evaluation of the performance of
the landmark localization phase; 2) measure the running
time of the proposed method; 3) determine the impact
of spurious landmarks in the final recognition accuracy of
our approach; and 4) assess the face recognition accuracy
of caricature-based recognition when compared to the
accuracy of using original photos. Regarding the first goal,
the Annotated Facial Landmarks in the Wild [44] (AFLW)
set was used to evaluate the results of the landmark
localization phase. The VGG dataset [8] was chosen for
its large quantity and diversity of face images (more than
2M images from 2622 celebrities), providing an excellent
tool for tuning a CNN to the task of face recognition.
Finally, the LFW [9], IJB-A [10] and MegaFace datasets
were used for assessing the performance of our approach in

2https://www.dgp.toronto.edu/ rms/software/matlabmesh/

Fig. 5. Examples of the datasets used in the empirical
validation of the proposed face recognition method. The
upper row regards the LFW dataset, whereas the bottom rows are
from the IJB-A and MegaFace sets.

Fig. 6. Cumulative error distribution curves for a subset of
the AFLW dataset. Four state-of-the-art landmark localization
methods (DLIB [30],TCDCN [32],TCDCN+MTCNN [31] and Zhu
and Ramanan [29]) and their fusion were evaluated in AFLW for ev-
idencing the advantages of combining their results with an ensemble
learning strategy.

data acquired in the wild. All these sets comprise images of
celebrities, except for AFLW and Megaface, which contain
images of Flickr users. Fig. 5 shows some images from the
datasets considered for performance evaluation.

A. Landmark Localization
The AFLW dataset has 25,993 color images, each one

annotated with a 21-point markup on visibility. This set
was used to compare the performance of the ensemble
learning strategy introduced in section IV-A with the
individual performance of four state-of-the-art landmark
localization methods [29], [30], [31], [32]. These methods
are compliant with the popular 68 landmark format [45],
while AFLW only provides a maximum of 21 landmarks
depending on visibility. For evaluation, we selected a sub-
set of 11 landmarks that share the same semantic positions
in the two formats. Also, we considered exclusively samples
with pose angles in the intervals yaw ±π4 , pitch ±π2
and roll ±π5 , according to the plausibility of observing
such poses in visual surveillance scenarios. In accordance
with the standard evaluation protocol [46], the average
point-to-point Euclidean distance normalized by the inter-
ocular distance was used as error metric, and the overall
accuracy is reported by the cumulative errors distribution
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Original

Caricature

Fig. 7. Comparison between the performance of the VGG-
Face network trained on veridical images and on caricatures.
The improvements in the CMC curve of the network trained on
caricatures evidence the benefits of using this representation for
automated face recognition. This improvement is justified by the fact
that caricatures enhance the distinctive features of subjects, easing
the recognition task.

curve in Fig. 6. The comparative performance between the
ensemble strategy and the best performing approach shows
an increase of 5% in the proportion of images with an inter-
ocular normalized error less than 10%. Even though these
improvements seem irrelevant, they represent a significant
decrease in the number of distorted caricatures caused by
spurious landmarks, which in turn ease CNN training and
improve the performance of the network.

B. CNN Training
This section details the architecture, the parameters and

the training data chosen for optimizing the network to
the caricature recognition task. Our goal is to show that,
similarly to humans, a CNN attains higher face recognition
rates if trained with caricatures than with the original
face images. The approach of Parkhi et al. [8] has been
found particularly useful for this endeavor because of two
major reasons: 1) the authors show that is possible to
obtain state-of-the-art face recognition results on different
datasets solely by training from scratch a CNN with
millions of images automatically retrieved from the web;
and 2) the network architecture (the VGG-Face) and the
set of images used for training (the VGG dataset) are
publicly available, allowing to replicate the experiments
of [8], and measure the performance gap between the use
of veridical photos and caricatures.

Accordingly, we trained the VGG-Face architecture
from scratch on two distinct types of data: 1) original
images of the VGG dataset (baseline); and 2) caricature
images of the VGG dataset. The original VGG set con-
tained 2.6M images (2622 identities with 1000 images),
but at the time of our experiments, only 2.1M images
were available on the web. Next, 90% of the images of each
subject were randomly selected for training and validation,
whereas the remaining were kept aside for performance
evaluation. The configuration used and the regularization
parameters for model optimization are described in Ta-
ble I. The level of exaggeration controlling the caricature

TABLE I
Training configuration used for adjusting the weights of

the CNN from scratch.

• Batch-size 64
• Momentum 0.9
• Weight-decay 5× 10−4

• Dropout Rate 0.5
• Learning Rate 10−2

• Weight Initialization X ∼ N (0, 10−4)

generation phase (κ) was optimized using the validation
set. For augmenting training data, a 224×224 pixel patch
was randomly cropped from the image and horizontal
flipping was applied with 50% probability. The model was
implemented in the MATLAB toolbox MatConvNet and
linked against the NVIDIA CuDNN libraries to accelerate
training. All the experiments were carried on a NVIDIA
Titan X GPU with 12GB of onboard memory, and each
epoch took about 13h to run.

The comparative performance obtained by evaluating
the trained models in 10% of the VGG set is depicted in
Fig. 7. The results evidence the benefits of using carica-
tures for automated face recognition, and we argue that
this improvement is justified by the fact that caricatures
enhance the distinctive features of the subject, easing the
recognition task. As an example, Fig. 7 also provides the
two representations of an identity of the VGG set, where it
is easier to identify the well-known actor Rowan Atkinson
by its caricature than by its veridical image.

C. Running Time

The average running time of the caricature generation
phase is a crucial variable for two major reasons: 1)
evaluating the applicability of the proposed method in a
real-time system; and 2) determining the time required for
generating the caricatures of the training set, which can
be prohibitive in the case of VGG dataset (2.1M images).
The extensive processing chain and the use of off-the-shelf
implementations affect substantially the processing time,
and, as such, some phases of the proposed approach were
modified either by using approximations or memoization.

In the 3DMM phase, the maximum number of itera-
tions for inferring the 3D model was changed from 50
to 5, as we noticed marginal differences in the obtained
models. Regarding model deformation, the off-the-shelf
implementation of the LME algorithm was optimized with
memoization, while caricature synthesis was speedup by
using triangulation hierarchy during texture rendering.
Table II provides a comparison between the original and
reduced average running time of each phase on a single
core of an i7-4790 CPU, as well as, the total running
time per image and the total time required for processing
the whole VGG set. The results show that, after the
optimization, training images can be generated in few
days by distributing the data into multiple computers and
exploit all the cores of the CPU.
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TABLE II
Comparison between the original and reduced running time

of the phases of the proposed caricature generation
method.

Phase Running Time (ms/img)
Original Reduced

Landmark Localization 160 ±120 160 ±120
3DMM 800 ±93 200 ±52
Face Analysis 95 ±26 95 ±26
3D Model Deformation 2 500 ±155 500 ±120
Image Synthesis 740 ±37 330 ±16

Total 4295 ±431 1290 ±334

VGG ≈ 114 days ≈ 31 days

TABLE III
Impact of facial landmark accuracy on the performance of

our approach.

Inter-ocular normalized
Euclidean errors (ξ)

Rank-1 face
recognition (%)

ξ = 0 86.44
ξ = 0.1 79.47
ξ = 0.2 71.63
ξ = 0.3 55.68

D. Face Recognition Performance: Impact of Landmark
Localization

Considering that our approach is highly dependent on
the performance of the landmark localization phase, we
assessed the influence of landmark localization accuracy
in the final recognition accuracy of the proposed approach
in the test set of the VGG database (refer to section IV-B).
For this evaluation, we adopted the strategy of Peng
and Yin [47] where the locations of facial landmarks
were corrupted by random noise generated from a normal
distribution N (0, σ). In order to perceive the impact of
landmark accuracy in the face recognition performance,
the original set of landmarks used in our experiments was
corrupted using different levels of noise. The noise level
was controlled by σ and adjusted to create four new sets of
landmarks with distinct inter-ocular normalized Euclidean
errors (ξ). The relation between rank-1 face recognition
accuracy and landmark accuracy is provided in Table. III.

The relation between ξ and the rank-1 face recognition
accuracy evidences that our approach is highly sensible
to incorrect landmarks (ξ = 0.3), but it can tolerate
medium deviations (ξ = 0.1) to the correct facial landmark
locations. Even though these results suggest that our
approach can not operate in real world scenarios, where
landmark localization is more likely to fail, it should be
noted that only 5% of face landmarks have a ξ >= 0.2
(results obtained in a random sample of the VGG man-
ually annotated). For this reason, we can conclude that
current performance of landmark localization algorithms
does not impact significantly the average recognition rate
of our caricature-based face recognition in unconstrained
data.

Method 100%-EER
aCNN [48] 98.00

Caricature (proposed) 97.25
VGG-Face (baseline) 95.10

3DMM-CNN [49] 92.33

Fig. 8. Face verification performance for the LFW dataset.
The ROC curves of caricature-based face recognition (our method)
and original image face recognition (baseline) show the advantages
of using this representation. Also, the results show that the obtained
performance is competitive with state-of-the-art algorithms.

E. Face Recognition Performance: Improvements due to
Caricatures

To assess the performance of the proposed approach
in highly unconstrained data, three state-of-the-art face
recognition datasets were used, namely the LFW [9], IJB-
A [10], and MegaFace [11]. The rationale for using multiple
sets was twofold: 1) ensuring a non-biased evaluation of
face recognition in the wild (the particularities of a single
set could inadvertently overestimate the recognition rate of
the proposed method); and 2) showing that the proposed
approach can cope with large variations in data.

During encoding, the metadata of the evaluation sets
were used to crop each probe image to a 256x256 sub-
image containing the facial region and maintaining aspect
ratio. Then, five patches of 224x224 pixels were sampled
from each face image (from the four corners and center),
and each region was duplicated with horizontal flipping.
The ten resulting patches were subsequently input to the
network and the obtained descriptors were averaged to
produce the face descriptor of the probe image.

1) Experiments on the LFW dataset: LFW is a de facto
benchmark for evaluating face recognition in the wild,
comprising 13,233 images from 5,749 subjects. The evalu-
ation protocol provides 3000 pairs of images organized in
10 splits for assessing the verification performance of face
recognition algorithms. Also, each method should report
the results under a specific setting with respect to the
type of training data used. In our case, even though the
descriptor obtained is not tuned in the LFW training data,
we should report our results under the ’unrestricted with
labeled outside data’ setting due to the use of the VGG
dataset during model training.

Regarding the comparison with state-of-the-art meth-
ods, the works of Tran et al. [49] and Masi et al. [48] were
selected for sharing similarities with our approach. In [48],
the 3D face structure was inferred from a single 2D image
to augment the number of training samples by rendering
the original face in a distinct pose, shape and expression.
In [49], the authors introduced a regression network for
estimating the 3D structure from a single 2D image and
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Negative Pairs Positive Pairs
Original Caricature

Score:0.17 7 Score:-0.16 3

Original Caricature

Score:0.01 7 Score:-0.25 3

Original Caricature

Score:-0.09 7 Score:0.19 3

Original Caricature

Score:-0.03 7 Score:0.05 3

Fig. 9. Successful cases of the proposed approach. The advantages of using caricatures for face recognition are represented by four
pairs of the LFW and IJB-A sets where our approach produced a correct score, while the use of veridical photos produced an incorrect
output.

used this representation for face recognition.
Results are summarized in the Receiver Operating

Characteristic (ROC) curves of Fig. 8. When compared
to the baseline, our approach achieved a significant
decrease in the EER, supporting the claim that
automated face recognition benefits from the use of
caricatures (refer to Fig. 9 for some examples). Regarding
the comparison to similar approaches, our approach
performed significantly better than 3DMM-CNN [49],
while it produced competing results with respect to
aCNN [48]. The results of [49] suggest that texture plays
a decisive role in the face recognition task, while the
comparison between the performance of our method
with [48] indicates that the emphasis of distinctive facial
features is as effective as generating multiple views of the
original image.

2) Experiments on the IJB-A dataset: The IJB-A
dataset represents an advance over LFW, by comprising
data with a wider range of variations, particularly in pose.
It contains 500 subjects with 5,397 images and 2,042 videos
split into 20,412 frames, 11.4 images and 4.2 videos per
subject. Regarding the evaluation protocol, it differs from
LFW by considering template-to-template comparisons
rather than image-to-image comparisons, where each tem-
plate contains a combination of images or frames sampled
from multiple image sets or videos of a subject. Algorithms
can be evaluated in the verification (1:1 matching) or iden-
tification (1:N search) protocol over 10 splits. In the ver-
ification protocol, each split contains around 11,700 pairs
of templates (15% positive and 85% negative pairs) on
average, whereas the identification protocol also consists of
10 splits, each containing about 112 gallery templates and
1763 probe templates. During evaluation, each template
is described by the average of image descriptors. Table IV
reports the performance of the baseline, the proposed
approach, and competing approaches with respect to the
standard accuracy metrics of IJB-A.

TABLE IV
Summary of the face recognition performance on IJB-A.

Method
Trained

on
IJB-A

Verification Identification
FAR 0.1 FAR 0.01 Rank-1 Rank-5

GOTS [10] Yes 62.7 ±1.2 40.6 ±1.4 44.3 ±2.1 59.5 ±2.0

OpenBR [50] Yes 43.3 ±0.6 23.6 ±0.9 24.6 ±1.1 37.5 ±0.8

Wang et al. [51] Yes 89.5 ±1.3 73.3 ±3.4 82.0 ±2.4 92.9 ±1.3

Chen et al. [52] Yes 96.7 ±0.9 83.8 ±4.2 90.3 ±1.2 96.5 ±0.8

aCNN [48] Yes 88.6 72.5 90.6 96.2

VGG-Face [8] No 85.4 ±1.2 61.1 ±2.3 87.6 ±1.6 92.8 ±0.9

Caricature No 86.0 ±1.4 63.5 ±2.7 88.9 ±1.1 94.1 ±0.7

Regarding the comparison with the baseline, the im-
provements of our approach were not statistically signifi-
cant, contrasting with the performance increase attained
in LFW. In our view, the principal cause for this outcome
was the failure of landmark localization, rather than the
ineffectiveness of caricatures. The particularities of IJB-A
(extreme variations in pose, face resolution, and illumi-
nation) affect significantly the accuracy of the landmark
detector, which in turn distorts the generated caricature
(Fig. 10 depicts some examples).

With respect to the comparison to other approaches,
our method outperformed the baselines of IJB-A (GOTS
and OpenBR), but it fell behind the remaining state-of-
the-art face recognition methods. However, it should be
stressed that, unlike the other approaches, no particular
effort was made to optimize our method for this dataset
(e.g., fine-tuning with IJB-A training data), since our
major concern is measuring the relative performance
between caricatures and original images.

3) Experiments on the MegaFace dataset:
MegaFace [11] is a recent and very challenging dataset
for evaluating face recognition at scale. The gallery set
comprises more than 1 million images from 690K different
individuals, while the probe set was sampled from the
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Negative Pairs Positive Pairs
Original Caricature

Score:-0.10 3 Score:0.08 7

Original Caricature

Score:-0.18 3 Score:0.11 7

Original Caricature

Score:0.08 3 Score:-0.12 7

Original Caricature

Score:0.02 3 Score:-0.09 7

Fig. 10. Failure cases of the proposed approach. The major causes of failure in the LFW and IJB-A sets are represented by four
pairs where our approach produced an incorrect score, while the use of veridical photos produced a correct output. The failure of landmark
localization caused by occlusions, facial expressions and low-resolution data is the major reason for incorrect caricature generation.

FaceScrub dataset. The evaluation protocol provides code
for assessing algorithms performance in the verification
and identification scenarios.

Table V summarizes the methods performance accord-
ing to the standard metrics of the dataset. The results
show that the proposed approach outperforms the baseline
on both recognition settings when using 1M distractors.
However, the performance gap is smaller than the one
observed in LFW. This can be explained by the extremely
large gallery set (1 million identities), which may increase
the likelihood of increasing the similarity between mis-
match pairs. For example, consider two subjects sharing
a salient facial feature (e.g., a big mouth), and diverging
in facial features that highly diverge from the average
face but represent smaller pats of the face (e.g., height
of the eyes). In the case of low-resolution images, our
approach would fail to highlight the smaller regions of
the face, and it would simply exaggerate the mouth. At
end, our approach would incorrectly increase the similarity
between the two faces, and this is more likely to occur
when a large gallery set is used. Regarding the comparison
with commercial approaches and the baseline methods
of MegaFace (LBP and Joint Bayes), it is interesting to
note that, in the majority of the cases, caricature-based
face recognition attained better performance than these
systems.

F. Caricature-based Face Recognition: Additional Insights
The comparison between training the VGG model with

or without caricatures evidenced the benefits of caricature-
based face recognition. The obtained results validated
experimentally the proposed approach, but they do not
provide any insight about the reasons for this improve-
ment. In our opinion, this transformation can be seen
as a pre-processing step that simplifies the task of the
optimization algorithm, either by allowing a faster con-
vergence or easing the search for minima in the objective
function. Considering that deep learning based approaches

TABLE V
Summary of the face recognition performance on MegaFace

with 1M distractors.

Method Rank-1 TAR@FAR=10−6

Vocord-DeepVo1 75.13 67.32
NTechLAB-facenx 73.30 85.08
Shanghai Tech 74.05 86.34
Google-FaceNet v8 70.50 86.47
Beijing FaceAll-Norm-1600 64.80 67.12

SIAT-MMLAB 65.23 76.72
Barebones FR 59.36 59.04

VGG-Face (baseline) 75.08 74.78
Caricature (proposed) 75.10 76.49

are supposed to infer the best features/transformations
that maximize the performance on a specific task, one
may question why the network could not learn directly
from the raw data the caricature process. In our view, this
transformation is significantly more complex than learning
specific features for the problem of face recognition, and
for this reason the caricature transform requires much
more data to be successfully learned.

Another important topic that should be discussed is the
choice of the exaggeration method, which is core of carica-
ture generation. As stated in previous sections, we adopted
a ’measure locally, weight globally’ because we assume that
this rule is the basis of the internal caricaturing process
occurring in the brain. However, it should stressed that
this assumption may be too simplistic, and for this reason
some failure cases of our approach may derive from the
proposed exaggeration scheme. Ideally, the exaggeration
scheme should be learned automatically from the data. We
hope that future works can exploit this idea for proposing
new strategies that enable deep learning based approaches
to implicitly learn the caricature transformation from raw
data.
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V. Conclusion
In this paper, we introduced the first fully automated

caricature-based face recognition approach capable of
working in real-time with data acquired in the wild.
A 3DMM method coupled with a set of automatically
detected facial landmarks was used for inferring the 3D
face structure of probe images. Next, the inferred model
was compared to a reference prototype for determining the
divergence between facial regions, and the exaggeration
applied to each region was determined by a ’measure
locally, weight globally’ strategy. The modified regions
were given as constraints to a Laplacian mesh editing
algorithm for deforming the original mesh, and the 2D
caricature was obtained by projecting the deformed model
in the original camera-view. During the learning phase,
the VGG-Face architecture was trained from scratch on
2.1M caricatures automatically generated from the VGG
dataset, whereas classification was performed with the
features from the ’fc6’ layer.

To assess the advantages of using caricatures for au-
tomated face recognition, we used three state-of-the-art
face recognition datasets for measuring the relative perfor-
mance between our approach and the VGG-Face trained
on the original images of the VGG dataset. The results
revealed significant improvements in the recognition per-
formance when using caricatures rather than veridical
images, confirming the usefulness of using caricature-based
face recognition. Regarding the comparison with state-of-
the-art methods, our approach was capable of obtaining
competitive results even without being particularly tuned
for any of the evaluation sets. Nevertheless, it should be
noted that our goal was not to attain the best performing
results on these sets, but measure the performance gap
between the use of caricatures and veridical images.
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