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Abstract Various methods were proposed to detect/match
special interest points (keypoints) in images and some of
them (e.g., SIFT and SURF) are among the most cited tech-
niques in computer vision research. This paper describes an
algorithm to discriminate between genuine and spurious key-
point correspondences on planar surfaces. We draw random
samples of the set of correspondences, from which homogra-
phies are obtained and their principal eigenvectors extracted.
Density estimation on that feature space determines the most
likely true transform. Such homography feeds a cost func-
tion that gives the goodness of each keypoint correspondence.
Being similar to the well-known RANSAC strategy, the key
finding is that the main eigenvector of the most (genuine)
homographies tends to represent a similar direction. Hence,
density estimation in the eigenspace dramatically reduces
the number of transforms actually evaluated to obtain reli-
able estimations. Our experiments were performed on hard
image data sets, and pointed that the proposed approach
yields effectiveness similar to the RANSAC strategy, at sig-
nificantly lower computational burden, in terms of the pro-
portion between the number of homographies generated and
those that are actually evaluated.

Keywords Keypoints detection · Keypoints matching ·
RANSAC

1 Introduction

The use of local descriptors in various computer vision appli-
cations has been gaining popularity. There are several justifi-
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cations for using such techniques: (1)descriptors are distinc-
tive; (2) robust to occlusion; and (3) do not require accurate
data segmentation and normalization. This kind of techniques
proved their effectiveness in a broad range of applications,
including object recognition (e.g., [15,22] and [24]), image
alignment (e.g., [17]), tracking (e.g., [9]) and robot naviga-
tion (e.g., [13]).

The value given to descriptors corresponds to their invari-
ance in transformative classes, including translation, scale,
rotation, affine and perspective changes. Various descrip-
tion and matching techniques were proposed, based on color,
intensity, texture or gradient information [1,3,18] and [28].
This kind of methods can be classified according to two cri-
teria: (1) their invariance levels; and (2) the analyzed data.
Empirical evaluations of such genre of techniques can be
found in the literature [20,25] and [26].

Regardless of the effectiveness of keypoint detection and
matching techniques, the occurrence of false correspon-
dences between keypoints is unavoidable and leads to errors
in subsequent processing phases. Hence, strategies to dis-
criminate between the genuine and spurious keypoint corre-
spondences are of interest. Among others, a family of algo-
rithms based on the Random Sample Consensus (RANSAC)
[10] gained popularity, due to its simple implementation and
robustness. It is divided into two main phases: (1) genera-
tion of a set of hypothesis from random samples; and (2)
validation of each hypothesis with respect to the remaining
data. Its use is widely reported in the literature, in domains
such as model fitting, epipolar geometry estimation, and
feature-based localization. However, the disadvantage fre-
quently reported is the high-computational burden in case
that too many iterations are required for convergence, which
happens for high order geometric hypothesis and heavy con-
taminated data. This observation is the key motivation behind
the work described in this paper.
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1.1 Related work

A method similar to the proposed in this paper is due
to Goshen and Shimshoni [12]. Here, authors described a
method to automatically estimate the epipolar geometry in
cases where correspondences are contaminated by many spu-
rious cases (outliers). Their strategy is based on simple Weak
Motion Models, each one sustained in an affine transform.
Next, the inliers and outliers probabilities for the correspon-
dences are obtained in a RANSAC-like way, based on corners
statistics on both images.

The analysis of the state-of-the-art stresses the role played
by RANSAC-like algorithms and their variants, which can
be divided into attempts to improve: (1) accuracy; and (2)
performance. Torr and Zisserman [30] presented a general-
ization of the RANSAC estimator (MLESAC) that shares
the insight of RANSAC, but chooses the solution that max-
imizes the likelihood, instead of the one that maximizes the
number of inliers. The error is modeled as a mixture of Gaus-
sians and is assumed that the distribution of outliers is uni-
form, enabling the error to be minimized by the negative
log likelihood. Given an initial estimate, authors suggest the
Expectation-Maximization algorithm to estimate the para-
meters of the mixture model. Chum and Matas [6] used the
ideas of order rank and of feature dissimilarity to propose a
method to speed-up RANSAC. The rationale is to sort the
set of correspondences based on the similarity function that
attempts to establish correspondences. Then, assuming that
such similarity measure is a weak predictor of genuine corre-
spondences, they drew random samples from progressively
larger sets of top-ranked correspondences. Authors observed
substantial improvements in performance, and in the worst
case, a convergence toward the RANSAC method. A sim-
ilar idea was due to Tordoff and Murray [29], which used
the prior probabilities of the validities between correspon-
dences. These were observed to give an order of magnitude
speed increase for problems where the correspondences are
described by one image transformation and clutter. Addi-
tionally, authors showed how all putative correspondences,
rather than just the best, from a particular feature can be
taken forward into the sampling stage. Albeit at the expense
of additional computation, this modification makes the algo-
rithm suitable to handle correspondence sets modeled by two
transformations and clutter at video-rates. Also with perfor-
mance concerns, Ni et al. [21] speeded up the convergence
process, by analyzing the group information between candi-
dates provided by optical flow-based clustering. The assump-
tion is that natural grouping criteria exist among the candi-
dates, and used a binomial mixture model, particularly effi-
cient in sampling data by reducing the number of groups from
where candidates are selected and the number of candidates
per group. Chin et al. [4] were also motivated by the compu-
tational burden of RANSAC, and proposed an approach to

accelerate hypothesis sampling, using information derived
from residual sorting, encoded in a series of inlier probabil-
ities estimates. Authors observed that the proposed strategy
dramatically reduces the number of samples required to con-
verge to a satisfactory solution and, in comparison with other
performance-concerned techniques, achieves best accuracy.
Nistèr [23] proposed a variant of RANSAC for estimation
of structure and motion in real-time environments, the main
singularity of which is that instead of counting the number of
potential inliers, the used scoring function is a robust likeli-
hood or Bayesian cost function. Also, authors used preemp-
tive scoring of the hypotheses generated by random sampling,
to avoid excessive scoring of useless hypotheses contami-
nated by outliers or distorted by noise. Even considering that
this might minimize the confidence in the selected hypoth-
esis, the real-time requirements led to that choice. Kenney
et al. [16] proposed a method based on the minimization
of local objective functions for translation, rotation-scaling-
translation and affine transforms. Shi and Tomasi [27] ana-
lyzed the eigenvalues of the normal matrix and presented a
technique for measuring the quality of local image patches
with respect to translation or affine transforms.

A comprehensive summary and performance evaluation of
RANSAC-based techniques can be found in the work of Choi
et al. [5]. Here, authors analyzed the most relevant techniques
published in terms of accuracy, performance and robustness
criteria.

1.2 Proposed method: cohesive perspective

When compared to the RANSAC algorithm, the method pro-
posed in this paper has the following singularities: (1) it dra-
matically reduces the number of hypothesis generated for
convergence, significantly reducing the computational bur-
den; (2) it has a much more limited scope, being suitable
exclusively for the purpose of estimate the goodness of key-
point correspondence on roughly planar data. The key steps
are the use of density estimation techniques in the eigenspace
of hypothesis (homographies), which reduces dramatically
the number of transforms actually evaluated, and signifi-
cantly lowers the computational burden of the process. In
terms of spectral theory, eigenvectors can be regarded as
invariant directions under a linear transformation. In this
case, the main eigenvector can be regarded as the major dis-
tortion in the transform (homography) and giving an idea of
the main orientation behind that distortion. The main eigen-
vectors of the homography matrices have only two degrees-
of-freedom and for most (genuine) homographies, the main
direction between the associated linear transform tends to be
the approximately the same. This is the main key insight into
the proposed algorithm.

Also, it should be stated the given method does not assume
any constraint on the spatial relationship of genuine corre-
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Fast discrimination of spurious keypoint correspondences 765

Fig. 1 Cohesive perspective of the proposed method. From a set of n
keypoint correspondences (K ), a bootstrapping-based technique draws
tk random samples. Then, a set of hypothesis (homographies) {Γ i }
is found, and the largest eigenvectors of the matrix corresponding to
their coordinates are projected into a feature space. Using kernel-based

density estimation techniques, regions of maximal density are used to
generate a score that outputs a goodness of fit value for each correspon-
dence. Finally, a sigmoid function ζ(ki ) gives the likelihood score of a
correspondence being genuine

spondences and can be applied to any planar object, which
is in opposition to previous studies that rely on geometrical
constraints specific to each application domain (e.g., [8]).
Figure 1 provides a cohesive perspective: the key insight is
that genuine keypoint correspondences should come together
in homographies that map the sample into the model data. We
iteratively draw random samples from the set of correspon-
dences and estimate the homography that match the model
and the sample data. Their principal eigenvectors are pro-
jected into a 3D feature space, which enables locating the
sub-space of maximal density. Then, a cost function based
on the �-2 norm estimates the goodness of each keypoint
correspondence.

The remainder of this paper is organized as follows. Sec-
tion 2 details each phase of the proposed method. Section 3
describes the used data sets and discusses the results obtained
by our method. Section 4 presents our overall conclusions.

2 Proposed method

2.1 Bootstrapping candidate selection

At least four point correspondences ki are required to esti-
mate a homography that maps points in image I1 into I2. Let
K = [k1, . . . , kn] be the set of keypoint correspondences
between I1 and I2, such that ki = [xi , yi , x ′

i , y′
i ] specify the

location (column x and row y) of the corresponding points
on both images. Our rationale is to draw a reasonably large
number of samples from K and estimate one homography
per sample. Each sample Si = {s1, . . . , s4}, being each si

an index in {1, . . . , n} (sampling without replacement) that
refers to rows of K .

Fig. 2 Example of a homography extracted from two samples S1 and
S2. The sample in the top left image satisfies (1), in opposition to the
sample given in the top right. Images at the bottom give the correspond-
ing projected data, in which the degenerative case of the right image is
evident because of the near-collinearity of three points in S2

Let C be the set of possible combinations of Si , taken
three at a time. A bootstrap sample Si is considered valid if:

∀ci ∈ C,

∣
∣
∣
∣
∣
∣

det

⎡

⎣

xci1 yci1 1
xci2 yci2 1
xci3 yci3 1

⎤

⎦

∣
∣
∣
∣
∣
∣

> δ, (1)

where |.| is the absolute value and det[.] is the matrix deter-
minant. In our experiments, we used δ = 0.05, with normal-
ized coordinates (0 ≤ (x, y) ≤ 1). The purpose of (1) is to
assure that no three keypoints from any sample are collinear,
to avoid degenerating homographies, as illustrated in Fig. 2.
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766 H. Proença

2.2 Homography

When imaging by a perspective camera, any two images on
the same planar surface are related by a homography Γ (also
called a projective transform or collineation). Formally, it is
given by:

[x, y, z]T = Γ · [x ′y′z′]T

=
⎡

⎣

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤

⎦ ·
⎡

⎣

x ′
y′
z′

⎤

⎦ , (2)

where (x, y, z) and (x ′, y′, z′) are the homogenous coordi-
nates in I1 and I2. Setting {z, z′} = 1 yields a plane-to-plane
homography:

{

x(h31x ′ + h32 y′ + h33) = h11x ′ + h12 y′ + h13

y(h31x ′ + h32 y′ + h33) = h21x ′ + h22 y′ + h23.
(3)

Each keypoint correspondence relates a point in I1 to a point
in I2. Given a set of correspondences, a matrix A can be
obtained by concatenating the Eq. (3), resulting in a system
of linear equations:

A · Γ = 0, (4)

that can be solved for Γ using homogenous linear least
squares. Hartley and Zisserman [14] give additional details
about this kind of techniques.

2.3 Eigenvector analysis

Let Γ = {pi j }, 1 ≤ i, j ≤ 3 be a homography. I3 is the
identity matrix and C a scalar matrix, such that C = λI3.

Γ − C =
⎡

⎣

p11 − λ p12 p13

p21 p22 − λ p23

p31 p32 p33 − λ

⎤

⎦ (5)

det (Γ − C) = 0 is a cubic equation which roots yield the
eigenvalues (λ(i), i = 1, 2, 3) of Γ . For each eigenvalue, the
corresponding eigenvector v(i) is given by:

(Γ − λ(i))v(i) = 0. (6)

Let V = [v(1), v(2), v(3)], (v(i) are column vectors) be the
eigenvectors matrix, which might have complex components.
The Schur [11] decomposition was used to convert it into the
real block diagonal form U . Because U is similar to Γ , it
shares the multiset of eigenvalues. In the following, v denotes
the principal eigenvector of Γ .

2.4 Density estimation

The next step is to estimate the density in the above described
feature space of v elements, which was done according to a
kernel-based strategy, as described by Matej et al. [19]. Their
model ps(v) of d-dimensional data is given by a Gaussian
mixture model with tg components:

ps(v) =
tg

∑

i=1

αi
e−1/2(v−μ)T Σ−1(v−μ)

(2π)d/2|Σ |1/2 , (7)

where μ and Σ denote the mean and covariance matrix of a
Gaussian kernel. Considering ps(v) to be a sample distribu-
tion, the density estimate is given by its convolution with a
kernel of covariance matrix H that defines bandwidth.

p̂kde(v) =
tg

∑

i=1

αi
e−1/2(v−vi )

T (H+Σ i )
−1(v−vi )

(2π)d/2|H + Σ |1/2 , (8)

where vi specifies the center of the ith kernel. To find the
kernel bandwidth H that minimizes the distance between
the estimated model p̂kde(v) and a probability density func-
tion, authors used the empirically observed covariance of the
samples to approximate an error measure for the estimator p̂
(asymptotic mean integrated squared error). Further details
about the algorithm to obtain the density estimates can be
found in [19].

2.5 Cost function

According to the procedure described in Sect. 2.4, we obtain
an estimate of the densities in the feature space populated by
the main eigenvector of each generated homography. Next,
we find the maximum density point and define a neighbor-
hood around it, selecting a subset of these homographies and
obtaining a cost for each one. The cost function φ of each
homography Γ is given by:

φ(Γ ) = 1

tk

( tk∑

i=1

||(xi , yi ) − Γ (x ′
i , y′

i )||2

+ ||(x ′
i , y′

i ) − Γ −1(xi , yi )||2
)

, (9)

where Γ (x ′
i , y′

i ) denotes the location of the ith keypoint on
the sample image transformed by Γ , and tk is the number of
keypoint correspondences considered. It should be stressed
that is not advisable to use all keypoint correspondences to
evaluate a homography (tk = n), as some correspondences
will be unavoidably spurious. Instead, we observed that by
considering a relatively short number of correspondences
(tk ∈ [ n

3 , n
2 ]), the best performance is obtained. As this para-

meter was empirically observed not to determine the over-
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Fast discrimination of spurious keypoint correspondences 767

Fig. 3 Key insight of the
proposed method: the feature
space populated by the principal
eigenvectors v of the
homography matrices found
from samples. The circular data
points denote elements extracted
exclusively from genuine
keypoint correspondences,
whereas the cross data points
resulted from samples
containing at least one spurious
correspondence. In the region of
highest density, a majority of
genuine correspondences is
evident, in contrast with the
eigenvectors extracted from
spurious correspondences that
spread more across the feature
space

all effectiveness of the proposed method in a strong way,
this optimal interval was found to be adequate, instead of
obtaining a unique value that will be strongly data-dependent.
Also, it should be stressed that not all homographies are
evaluated. As illustrated in Fig. 3, only those that are in
the �-2 norm neighborhood around the maximum density
point in the feature space from pkde(v) are actually evalu-
ated (≈ 10 % below the maximum density was used in our
experiments).

2.6 Reliability score

Finally, an estimate of the goodness of each keypoint corre-
spondence is found, according to values obtained in (9). Let
m = argl min φ(Γ l) be the index of the homography that
minimizes the cost of projecting keypoints between the pair
of images. The likelihood that a keypoint correspondence ki

is genuine has inverse correspondence to:

ζ(ki ) = ||(xi , yi ) − Γ m(xi ′ , yi ′)||2
+ ||(xi ′ , yi ′) − Γ −1

m (xi , yi )||2 (10)

3 Performance evaluation

The proposed method was mainly tested with two keypoint
detection and matching techniques that are widely seen in
the specialized literature: SIFT and SURF. The idea of both
methods is to find positions in the images with notorious
differences in appearances with respect to their neighbour-

hood (in space and scale terms). Further details about these
techniques can be found at [18] and [1].

Proposed by Lowe [18], SIFT is an extremely popu-
lar technique for detecting and matching image keypoints.
Detection starts by constructing a scale-space pyramid,
approximated by the difference between images blurred by
Gaussian kernels of different sigma values. Each pixel is
considered a candidate if it is a local maximum within a
3D neighbourhood window. Next, keypoints with unstable
extrema and corresponding to edge responses are rejected
and the magnitude of the remaining keypoints is given by the
accumulated energy of forward differences.

3.1 Data sets

For reproducibility, a concern was to keep all data sets used
in the empirical evaluation of the proposed method publicly
available1. The method was tested in a set of 1,000 images,
acquired by a Canon Digital Ixus 99 IS camera. Images have
originally dimensions 4,000 × 3,000 and were resized to
800 × 600 using bilinear interpolation techniques, converted
to grayscale and stored in a bitmap format. To assure that a
single homography can map the model into the sample data
for every pair of images, all acquired scenes are roughly pla-
nar. All contain non-deformable objects acquired from vari-
ous distances, 3D angles and non-controlled lighting condi-
tions. Images contain both natural and human-made scenes
as well as indoor and outdoor and paintings. Figure 4 presents
several examples of the data used.

1 http://www.di.ubi.pt/~hugomcp/doc/keyMatchData.zip.
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Fig. 4 Examples of the data sets used in our experiments. The images
regard a broad spectrum of scenes (e.g., buildings, vehicles, forests,
paintings) and were acquired in non-controlled conditions with signifi-
cant variations in the traditional data variation factors: indoor and out-
door scenes with scale, rotations, perspectives, occlusions, reflections,
lighting and shadow variations

Ground-truth data are also available. For each pair of
images with regard to the same scene, the SIFT and SURF
keypoint detections and matching techniques were used and
their outputs manually validated by human observation. Each
keypoint correspondence found was binary classified into
genuine or spurious, whether they regarded the same point
on both the model and sample data.

Additionally, to provide a comparison term with related
approaches, the proposed method was tested in the planar
subset of the Oxford VGG data2. Thus, results for grafitti,
wall, and bark images are also given.

3.2 Results and discussion

Figure 5 illustrates several examples of the proposed method,
in which the keypoint correspondences deemed genuine are
represented as thin green lines and the correspondences dee-
med spurious are represented as thick red lines. Here, TPR
measures the system sensitivity, i.e., the proportion of gen-
uine correspondences that were found genuine by the algo-
rithm. Oppositely, the FPR value quantifies the proportion of
spurious correspondences that were considered genuine by
our algorithm.

Figure 6 gives a comparison between the probability
density functions of ζ(ki ) values for genuine and spuri-
ous keypoint correspondences, when using the SIFT (top
row) and SURF (bottom row) detection and matching tech-
niques. The dashed lines represent the genuine correspon-
dences and the continuous lines represent the spurious cor-
respondences. ζ(ki ) are the raw score values and ζ ∗(ki ) are

2 http://www.robots.ox.ac.uk/~vgg/research/affine/.

the transformed values that approximate Gaussian distribu-
tions, using the Box-Cox transform. The larger plots given at
the right side compare both distributions (genuine/spurious
correspondences), giving broad evidence of a clear separabil-
ity between the typical ζ(ki ) values observed for both types
of keypoints comparisons, which is the root of the method
proposed in this paper.

Let S be a random variable that represents the number of
spurious correspondences selected when drawing a sample
of cardinality tk from the set of n keypoint correspondences,
with s being spurious. The probability of selecting at least
one spurious correspondence is given by:

P(S > 0) = 1 − P(S = 0)

= 1 −
(n−s

tk

)

(n
tk

) (11)

In our experiments, the number of samples generated by
the bootstrapping strategy was defined according to a user-
adjusted reliability score. Let Pi (S = 0) be the probability
of drawing a sample composed exclusively of genuine cor-
respondences at iteration i . The corresponding probability
mass function is given by:

Pi (S = 0) =
(

1 − P(S = 0)
)i−1

P(S = 0) (12)

Accordingly, the cumulative distribution function is given
by:

P<i (S = 0) =
i

∑

ki =1

(

1 − P(S = 0)
)ki −1

P(S = 0) (13)

The number of samples generated in the bootstrapping strat-
egy is given by:

arg min
i

P<i (S = 0) > ς, (14)

where ς is the reliability score (≈ 0.99 was used in our
experiments).

To assess performance decreases regarding the reliabil-
ity factor, we introduced spurious correspondences in the
data and observed the resulting performance. However, as
illustrated in the leftmost plots in Fig. 6, the densities for
the ζ ∗(ki ) scores both for genuine and spurious keypoint
correspondences are not Gaussian. Hence, before obtaining
the decidability index, the ζ ∗(ki ) scores were firstly trans-
formed to be roughly Gaussian, using the Box-Cox transfor-
mation [2]:

ζ ∗(ki ) =
{

ζ(ki )−1
λ

, if λ �= 0
log(ζ(ki )), if λ = 0

. (15)
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Fig. 5 Examples of the results
obtained by the proposed
method, in discriminating
between the genuine (thin green
lines) and spurious (thick red
lines) keypoint
correspondences. TPR
sensitivity, FPR false-positive
rate and ACC accuracy. n and s
are the total of correspondences
and the number of spurious.
Images ate the bottom row
illustrate not so successful
cases: in these cases, the depths
in scenes have strong variations
and—as such—occurring
transformations in data cannot
be modeled by a single
homography

Having a set of quasi-normal ζ ∗(ki ) scores, the decidability
index was used to measure the average separation between
the scores generated for genuine and spurious keypoint cor-
respondences:

d ′ = |μG − μS|
√

σ 2
G+σ 2

S
2

, (16)

where μG =
∑

i ζ ∗G
i

k and μS =
∑

i ζ ∗S
i

m are the means of the

genuine/spurious distributions and σG =
∑

i (ζ
∗G
i −μG )2

k−1 and

σS =
∑

i (ζ
∗S
i −μS)2

m−1 are their standard deviations.
Figure 7 presents two plots related to the issue of the pro-

portion of spurious correspondences and the number of trans-
forms (homographies) actually generated and evaluated with
respect to that parameter: (1) the upper plot is the probability
of selecting no spurious correspondences from a set of n cor-
respondences with respect to the number of spurious corre-

spondences (s); and (2) the bottom plot gives the relationship
between the prior probability of drawing a sample composed
exclusively by genuine correspondences (P(S = 0)), the
number of homographies generated (light boxes) and those
that were actually evaluated by (9) (dark boxes).

3.3 Computational complexity and results variability

The computational complexity of the proposed method is
a major issue for real-time data handling. For comprehen-
sibility, we denote every parameter evolved in the computa-
tional cost of the proposed method by α. and a corresponding
index (Table 1). The process starts by generating a random
permutation, which can be performed in time linear to the
number of keypoint correspondences O(α1). Obtaining each
homography involves computing the null space of the cor-
respondences matrix (4), which takes O(α2

2 .α3). Each set of
eigenvectors and eigenvalues was obtained in time O(α4

4),
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770 H. Proença

Fig. 6 Comparison between the probability density functions of ζ(ki )

values for genuine and spurious keypoint correspondences, when using
the SIFT (top row) and SURF (bottom row) detection and matching
techniques. The dashed lines represent the genuine correspondences

and the continuous lines represent the spurious correspondences. ζ(ki )

are the raw score values and ζ ∗(ki ) are the transformed values that
approximate Gaussian distributions, using the Box-Cox transform

where α4 is the dimensions of the square matrix (three in our
experiments). The transformation of sample data according
to a homography is accomplished by matrix multiplication,
performed in time O(α5.α

2
4), where α5 is the number of key-

point correspondences.
In terms of the computational performance of the proposed

algorithm, even though it is a data-dependent stochastic
process, the most important factor is given in Fig. 7, plotting
the proportion between the number of homographies gener-
ated (light boxes) and those that were actually evaluated by
(9) (dark boxes). The major point is that a roughly quadratic
correspondence was observed for both values, keeping val-
ues that are notoriously lower than that performed by the
RANSAC algorithm (around 1,600 for P(S = 0) = 0.1)
(Fig. 8).

As this procedure can be classified as a stochastic process,
another issue concerns the variability of the results for a given

input. Figure 9 gives the variability of the decidability scores
(16) obtained, with respect to the reliability score ς . The
results are expressed by boxplots, showing the median of the
observed performance range (horizontal solid line) and the
first and third quartile observation values (top and bottom
of the box marks). The horizontal lines outside each box
denote the upper and lower whiskers, and dot points denote
the outliers. The obvious effect is the reduction in the average
variability, with respect to the reliability parameter, i.e., as
the number of samples increases (higher reliability values),
the results become more stable, which we believe has roots
in the central limit theorem.

Considering that most of the published RANSAC-variants
used the original RANSAC as main comparison term, and
that the proposed method is actually a variant of that
method, we decided accordingly and provide the compari-
son between the performance achieved by RANSAC and the
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Fig. 7 The top plot gives the probability P(S > 0), i.e., the probability
of selecting at least one spurious correspondence when sampling four
elements, with respect to n and s. The bottom plot gives two boxplot
series: the light boxplots give the number of hypothesis generated by
the proposed method, with respect to the prior probability of drawing
a sample composed exclusively of genuine correspondences. The dark
boxplots give the corresponding sub-sets that were actually taken into
account in the evaluation process, which were in the neighborhood of
the point of maximum density in eigenspace

Table 1 Parameters of the proposed method and corresponding values
used in our experiments

Symbol Description Value

α1 Number of keypoint correspondences [10, 300]
α2 × α3 Dimensions of the correspondences matrix 8 × 9

α4 × α4 Dimensions of the homography matrix 3 × 3

α5 Number of image pixels per image 480, 000

given method. Also, by sharing the RANSAC comparison
term, it will be straightforward to compare the performance
of the proposed method to other RANSAC variants. Fig-
ure 10 gives a comparison between the ROC curves obtained
by the proposed method (dark lines) and RANSAC (red lines)

in our data sets. The vertical lines correspond to the maxi-
mum and minimum observed performance at each operating
point, when repeating the evaluation process on sub-sets (300
images) randomly selected from the original data set. The
dashed black line corresponds to the TPR = FPR curve, i.e.,
to a totally random pattern recognition system. The sensitiv-
ity values observed at the different false match levels were
quite close between both algorithms, with a slight decrease in
performance of the method described in this paper (less than
1%, on average). This was mainly explained by the reduced
number of hypothesis evaluated on each iteration that might
neglect some valid transforms sometimes. Also, a slightly
higher variability of the results of the proposed method on
different sub-sets was observed, which again is justified by
the dramatically lower number of transforms evaluated, when
compared to the RANSAC strategy. In this case, we observed
reductions of more than two orders of magnitude in the num-
ber of hypothesis that were considered for the phase of the
proposed method that is more concerning in terms of the
computational burden (apply homographies to data). This
improvement in performance is specially evident in cases
where the proportion of spurious correspondences is low.

4 Conclusions and further work

The use of keypoint-based detection and matching techniques
has been gaining popularity for a broad range of scenar-
ios. However, the occurrence of spurious correspondences
between keypoints is unavoidable and a common source of
errors. In this paper, we proposed a stochastic method that
focuses on the spatial distribution of keypoint correspon-
dences on non-deformable planar objects to estimate the
goodness of correspondences, discriminating between spuri-
ous and genuine. Being based on the RANSAC algorithm, the
key novelty is that genuine correspondences tend to agree in
the eigenvectors of the homographies that map data, in con-
trast to spurious correspondences. By finding the most likely
true homography, the reliability of each keypoint correspon-
dence is found. Our experiments confirmed the effectiveness
of the proposed technique, even when the proportion of spuri-
ous correspondences is around the classical breakdown value
for the proportion of spurious correspondences (0.5). We note
that RANSAC is able to handle more than half of spurious
correspondences, but in such cases the algorithm starts to
converge in a much more slowly way.

For the moment, experiments were constrained to images
that contain a single planar surface, which lead to single
peaked density estimates in the eigenvectors space. In the
future, we expect to extend our work to images with multiple
planar surfaces that appear to lead to multiple peak density
estimates in the eigenvectors space. This point will be subject
of further analysis. Also, another possible extension for this
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Fig. 8 Examples of the discrimination obtained between the genuine (thin green lines) and spurious (thick red lines) keypoint correspondences,
using the bark, wall and graf sets of the Oxford VGG data
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Fig. 9 Boxplot of the variations in the decidability score (16) obtained
when repeating the stochastic process described in this paper, with
respect to reliability parameter

work is the study of second-order algorithms to select only a
subset of the transforms in the most dense subspace, instead
of selecting all of them, as it is suggested in this paper. A pos-
sibility might be to use algorithms such as the Mean shift [7],
even considering that this phase will essentially speed-up the
discrimination process, at expenses of a slight decrease in the
accuracy obtained.
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