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a b s t r a c t

Iris recognition has been widely used in several scenarios with very satisfactory results. As it is one of the
earliest stages, the image segmentation is in the basis of the process and plays a crucial role in the success
of the recognition task. In this paper we analyze the relationship between the accuracy of the iris segmen-
tation process and the error rates of three typical iris recognition methods. We selected 5000 images of
the UBIRIS, CASIA and ICE databases that the used segmentation algorithm can accurately segment and
artificially simulated four types of segmentation inaccuracies. The obtained results allowed us to con-
clude about a strong relationship between translational segmentation inaccuracies – that lead to errors
in phase – and the recognition error rates.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The use of biometric systems has been increasingly encouraged
by both government and private entities, in order to replace or im-
prove traditional security systems. The iris is recognized as one of
the most reliable biometric traits: it has a random morphogenesis
and high complexity, making individual patterns apparently unique.

Using inflexible image capturing conditions and protocols it is
possible to acquire images with good quality and achieve impres-
sive accuracy, with very low error rates. Also, most of the failure
cases (usually false non-matches) occur when images do not have
enough quality, either due to focus, contrast or brightness prob-
lems resultant of improper lighting or due to iris occlusions by eye-
lids, eyelashes, glasses, contact lenses or reflections. This problem
was identified by several authors (e.g., [1–3]) and concerns a grow-
ing number of researchers.

Regarding an iris recognition system as an image processing
task, the role of the segmentation stage in the final results can be
easily anticipated. As it is usually the earliest stage, any failure
compromises the whole process. Also, it is the stage that more
directly should handle the raw data’s heterogeneity, resultant of
non-ideal imaging. Independently of the accuracy of the used
segmentation methods, it is realistic to consider that dynamic
lighting conditions and less constrained imaging protocols should
lead to the existence of segmentation inaccuracies, i.e., small errors
between the detected and the true iris borders.

In this paper our goal consists in the analysis of the relationship
between the accuracy of the segmentation process and the error

rates of typical recognition systems. In order to achieve this, we
performed the following experimental procedure:

(1) Selection of 5000 images of the UBIRIS (first [4] and second
[17] versions), CASIA (third version [5]) and ICE [6] dat-
abases. Manual verification that the used iris segmentation
algorithm is able to accurately segment all the images.

(2) Feature extraction on accurately segmented images: extrac-
tion of the biometric iris signatures according to three
distinct iris encoding strategies that we believe to represent
the most usual approaches.

(3) Feature comparison: comparison, using the Hamming dis-
tance, between the iris signatures extracted in the previous
stage.

(4) Simulation of segmentation inaccuracies. Corruption of the
segmentation algorithm in order to less accurately localize
the iris borders.

(5) Feature extraction and comparison on inaccurately seg-
mented images: extraction and comparison of the resulting
signatures through the previously used methods.

It should be stressed that this analysis is independent of the
choice of the segmentation algorithm, as we manually verified that
the used one is able to accurately localize both iris borders (pupil-
lary and scleric) of all the used images. Oppositely, it is dependent
of the three used feature extraction methods [8,9,2]. These were
selected respectively due to their relevance in the literature [8]
and to the fact of share the use of normalized and pseudo-polar
images to extract binary iris signatures [9,2].

The remaining sections of this paper are organized as follows:
Section 2 briefly summarizes the most cited iris recognition meth-
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ods and overviews some of the most relevant iris segmentation
approaches. Section 3 analyzes and discusses the influence of each
type of segmentation error in the recognition accuracy and, finally,
Section 5 gives the conclusions.

2. Iris recognition

Fig. 1 gives a block diagram that contains the typical stages of
the published iris recognition methods. In spite of the specificities
of each proposal, the large majority share the given structure.

The initial stage concerns about the segmentation of the iris.
This consists in localize the iris inner (pupillary) and outer (scleric)
boundaries, assuming either circular or elliptical shapes for each
border. Additionally, it is usual to detect regions of the iris texture
occluded by any other type of data, as eyelids, eyelashes, glasses or
hair.

In order to compensate variations in the pupils sizes and in the
image capturing distances, the segmented data is translated into a
fixed length and dimensionless polar coordinate system, which is
usually performed through the method proposed by Daugman [8].

Regarding feature extraction, iris recognition approaches can be
divided into three major categories: phase-based methods (e.g.,
Daugman [8]), zero-crossing methods (e.g., Boles and Boashash
[10]) and texture-analysis based methods (e.g., Wildes [1]). Daug-
man [8] used multi-scale quadrature wavelets to extract phase
information from the iris texture and obtain a biometric signature
with 2048 binary components. Boles and Boashash [10] computed
the zero-crossing representation of an unidimensional wavelet at
different scales of concentric circles and Wildes [1] proposed the
characterization of the iris texture through a Laplacian pyramid
with four different levels (scales).

On the final stage it is performed a comparison between iris sig-
natures, yielding a numeric dissimilarity value. If this is higher
than a threshold, the system outputs a non-match, meaning that
each signature belongs to different irises. Otherwise, the system
outputs a match, meaning that both signatures were extracted
from images of the same iris.

As the schema of Fig. 1 illustrates, the segmentation stage is in
the basis of the process, which explains its major role. In the next
sub-section we overview some of the most relevant approaches to
perform the segmentation of the iris on close-up iris images.

2.1. Iris segmentation methods

There are two major strategies to perform the segmentation of
the iris: use a rigid or deformable iris template or use its boundary.
In most cases, the boundary-based approach starts by the con-
struction of an edge-map, followed by the application of some geo-
metric form fitting method. Template-based strategies usually
include the maximization of some equation and are in general
more heterogeneous.

In 1993, Daugman [7] published one of the most cited methods,
which was used on near all the commercially deployed systems. He

proposed the use of an integro-differential operator to find both
the iris inner and outer borders. This operator remains up-to-date
and was proposed with some minor differences in 2004, by Nishino
and Nayar [11]. Similarly, Camus and Wildes [12] and Martin-
Roche et al. [13] used integro-differential operators that search
over tridimensional spaces, having as goal the maximization of
equations that localize both iris borders.

Wildes [1] started the segmentation of the iris ring by the con-
struction of a binary edge-map. Next, used the circular Hough
transform to fit circles that delimit the iris ring. This is the most
usually seen method in the iris segmentation literature and is pro-
posed with minor variants by Wang and co-workers [14,15,2]. Also
based in Wildes’, Proença and Alexandre proposed a method [16]
that uses a clustering process to increase the robustness to noisy
data.

The method proposed by Du et al. [18] is based on the previous
detection of the pupil. The image is then transformed into polar
coordinates and the iris outer border localized as the largest hori-
zontal edge resultant from Sobel filtering. This approach may fail in
case of non-concentric iris and pupil, and of very dark iris textures.

Morphologic operators were applied by Mira and Mayer [19] to
find both iris borders. They detected the inner border by sequen-
tially using threshold, image opening and closing techniques. The
outer border was similarly detected.

Based on the assumption that the intensity values of close-up
iris images can be well represented by a mixture of three Gaussian
distributions, Kim et al. [20] proposed the use of the Expectation
Maximization algorithm to estimate the parameters of the respec-
tive distributions. They expect that ‘Dark’, ‘Intermediate’ and
‘Bright’ distributions respectively contain the pixels corresponding
to the pupil, iris and reflections areas.

3. Experiments

In this section we describe the types of segmentation errors
used in our experiments and analyze their impact on the recogni-
tion error rates.

The Wildes’ [1] method was used to segment all the iris images.
In order to enable the experiments, we manually verified that the
algorithm has accurately localized all the pupillary and scleric iris
borders.

The cartesian to polar transformation was made through the
widely used ‘‘Daugman Rubber Sheet” [7], yielding dimensionless
polar representations of the irises with dimensions of 512 (width)
by 64 (height) pixels.

Three distinct feature extraction methods were implemented
[8,9,2]. As common points, they share the analysis of the normal-
ized (polar) iris representation, the extraction of binary signature
components and the use of the Hamming distance to compute
the dissimilarity between signatures. Daugman [8] convolved the
normalized iris data with a bank of Gabor filters at different reso-
lutions and orientations to extract the biometric signature. Ali and
Hassanien [9] encoded the iris data through the dyadic wavelet
decomposition (using the Haar as mother wavelet), being this ap-
proach one of the most frequently seen in the iris recognition liter-
ature. Finally, Ma et al. [2] were also based in the dyadic wavelet
decomposition to build a set of binary sequences that localize re-
gions of the iris with high intensity variations.

3.1. Experiments databases

There are presently seven public and freely available iris image
databases for biometric purposes: Chinese Academy of Sciences [5]
(CASIA, three distinct versions), Multimedia University (MMU, two
versions), University of Bath (BATH), Palacký University OlomoucFig. 1. Typical stages of published iris recognition methods.
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(UPOL), Iris Challenge Evaluation [6] (ICE), West Virginia University
(WVU) and University of Beira Interior [4] (UBIRIS, two versions).

CASIA database contains near infra-red (NIR) images and is by
far the most widely used on iris biometric experiments, having
presently three distinct versions. Its images incorporate few types
of noise, almost exclusively related with eyelid and eyelash
obstructions, similarly to the images of the MMU and BATH dat-
abases. UPOL images were captured with an optometric frame-
work, obtaining optimal images with extremely similar
characteristics. Although ICE and WVU are NIR databases that con-
tain more heterogeneous images, their lack of images with signif-
icant reflections occluding the iris rings constitutes a weak point,
regarding the simulation of less constrained imaging conditions.
Oppositely, images of the UBIRIS database were captured on the
visible wavelength, under natural lighting and heterogenous imag-
ing conditions, which explains their higher heterogeneity.

According to the aforementioned discussion, we selected 10
images per subject from three databases (Fig. 2): UBIRIS (first and
second version), CASIA (third version) and ICE databases, giving a
total of 5000 images. Further, we extracted the biometric signatures
from these images (using the afore described feature extraction
strategies) and compared each signature with all the remaining
ones of the respective data set, performing a total of respectively
22,500 and 4,475,000 intra- and inter-class comparisons.

Images of the UBIRIS databases have fixed dimensions of 400
(width) by 300 (height) pixels and horizontal and vertical resolu-
tion of 300 dpi. The irises have radius values between 80 and 100
pixels and the pupils values between 15 and 35 pixels. Images of
the CASIA database have 320� 280 pixels and horizontal and ver-
tical resolution of 96 dpi. The irises have radius values between 87
and 110 and the pupils between 20 and 45 pixels. Finally, images of
the ICE database have 320� 240 pixels with vertical and horizon-
tal resolution of 96 dpi. The irises have radius values between 73
and 97 pixels and the pupils between 13 and 38 pixels.

3.2. Types of segmentation errors

The iris segmentation method used in our experiments approx-
imates both the iris and the pupil as circles. Thus, each border can
be defined by its center coordinates ðx; yÞ and radius r. Let ðxs; ysÞ

and rs be respectively the center coordinates and radius of the cir-
cle resultant of the segmentation process. Also, let ðxt ; ytÞ and rt be
the respective parameters of the true iris circle.

In our implementation of the segmentation method we artifi-
cially simulated two types of errors:

� Translational errors: we defined a translational error of p pixels
when kxs � xtk þ kys � ytk ¼ p. It occurs when the center of the
segmented circle is deviated p pixels from the center of the true
circle. Fig. 3b gives an example of a translational error in the seg-
mentation of the pupillary border.

� Scale errors: as Fig. 3c and d illustrate, a scale error occurs when
the detected and the true circles have different radius values. If
krs � rtk ¼ p then we considered this as a scale error of p pixels.

These two types of errors on each iris border enabled the
appearance of four distinct segmentation errors: translational error
on the scleric border, translational error on the pupillary border,
scale error on the scleric border and scale error on the pupillary
border. Other types of segmentation errors can be expressed as lin-
ear combinations of the above described errors and were not the
subject of our analysis.

4. Results and discussion

By using Hamming distance as the dissimilarity measure, each
comparison between iris signatures gives a value, closed in the
[0,1] interval, that is directly proportional to the dissimilarity be-
tween the compared irises.

On each test, we made all the possible intra- and inter-class
comparisons between signatures extracted from the respective
data set. Table 1 contains the average separability between the in-
tra- and inter-class comparisons and the obtained error rates,
regarding the accuracy of the segmentation stage. ‘‘FRRFAR¼0” corre-
sponds to the false rejection rates when the false acceptances were
minimized, ‘‘EER” gives the approximated equal error rates and the
last columns contain the value of a Fisher-ratio test (FR) given by:

FR ¼ ðlE � lIÞ
2

r2
I þ r2

E

ð1Þ

Fig. 2. Examples of close-up iris images of the databases used in our experiments: (a) UBIRIS, (b) third version of CASIA and (c) ICE.

Fig. 3. Accurate and inaccurately segmented iris images.
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where lI and lE respectively indicate the mean of the intra- and in-
ter-class comparisons. rI and rE indicate the respective standard
deviations.

Not surprisingly, the highest separability between the intra- and
inter-class comparisons was obtained with accurate segmentation.
Also, we observed that translational segmentation errors have a
stronger impact in the recognition error rates than scale errors do,
which is explained by the fact that this type of errors corresponds
to errors in phase, causing many bits to appear flipped in the iris sig-
natures and corrupting the comparison between signatures.

When comparing the impact on the error rates caused by
segmentation errors on each iris border, we obtained very close
results, which we justify by the iris normalization process and by
the fact that we did not privileged specific iris regions in the fea-
ture extraction process.

At first, the transformation into the pseudo-polar coordinate
system is defined as a linear combination of both borders. Thus,
they should naturally play similar roles in the process and similarly
affect the error rates.

Finally, it is often considered that errors in the segmentation of
the pupillary border are of bigger concern, regarding the recogni-
tion error rates. It is suspected that deployed systems privilege
the inner regions of the iris to encode the iris signature, which ex-
plains their higher tolerance to errors in the segmentation of the
scleric border. As our purpose was not to specifically evaluate
one recognition method, we did not privileged any iris region in
the feature extraction stage, which justifies that errors in the seg-
mentation of the pupillary and scleric iris borders tend to similarly
deteriorate the recognition results.

Fig. 4 stresses the above described increase of the error rates. It
contains the DET curves obtained with accurate segmentation
(continuous lines) and translational errors in the pupillary border
of respectively one (dashed lines) and three pixels (dotted lines).
Confirming our previous observations, a significant increase in
the error rates has occurred, which has evident proportionality to
the amplitude of the segmentation error. Also, we observed that
this deterioration was similarly observed either in the less noisy
(CASIA and ICE) and noisiest (UBIRIS) data sets.

Table 1
Separability between the intra- and inter-class comparisons and respective obtained recognition error rates, regarding the accuracy of the segmentation stage. FRRFAR¼0 gives the
false rejection rates with no false acceptances, EER corresponds to the approximated equal error rates and Fisher-ratio test gives the values obtained by (1).

Error FRRFAR¼0 (%) EER (%) Fisher-ratio test

CASIA ICE UBIRIS CASIA ICE UBIRIS CASIA ICE UBIRIS

No error 6.81 9.90 12.12 1.31 2.63 4.27 22.75 20.95 17.54

Translational error on the pupillary border
1 pixel 7.96 11.49 15.80 1.85 3.69 5.48 20.31 18.71 16.95
2 pixel 12.15 15.76 18.91 2.98 4.48 6.44 18.56 16.94 15.60
3 pixels 15.97 17.06 21.42 3.90 5.11 7.84 17.64 14.75 14.67
4 pixels 18.95 20.42 26.15 4.95 6.97 8.34 15.63 13.47 13.16
5 pixels 21.48 24.54 30.70 5.58 8.53 10.50 14.70 12.27 11.97

Translational error on the scleric border
1 pixel 7.69 10.09 13.93 1.81 3.66 5.29 19.83 18.91 16.72
2 pixels 12.91 13.72 17.77 2.99 4.19 7.12 17.08 17.72 15.27
3 pixels 15.89 18.13 21.59 3.92 5.25 8.81 15.58 15.28 13.75
4 pixels 19.09 21.25 24.66 5.00 7.11 8.75 14.53 13.58 12.71
5 pixels 21.72 24.84 29.93 5.68 8.38 10.02 14.03 12.97 11.72

Scale error on the pupillary border
1 pixel 7.07 9.93 12.99 1.33 3.16 5.31 20.68 18.90 16.84
2 pixels 7.59 10.08 13.12 1.61 3.22 5.51 19.92 18.08 15.98
3 pixels 8.05 10.77 13.56 1.71 3.79 5.85 18.74 17.91 15.28
4 pixels 8.40 11.40 13.88 1.79 4.43 6.85 18.45 16.82 14.43
5 pixels 9.53 11.93 14.46 1.95 5.06 7.26 17.22 15.83 13.93

Scale error on the scleric border
1 pixel 6.99 9.61 13.11 1.37 3.26 5.35 20.69 18.92 16.89
2 pixels 7.61 10.07 13.47 1.45 3.90 5.70 20.12 17.71 16.02
3 pixels 8.07 10.73 13.80 1.50 4.28 6.44 19.37 17.10 15.49
4 pixels 8.67 11.00 14.07 1.77 4.91 7.01 18.80 16.29 14.21
5 pixels 9.49 11.86 14.80 1.99 5.12 7.39 17.80 15.63 13.98

Fig. 4. Comparison between the Detection Error Tradeoff (DET) obtained with accurate (continuous lines) and inaccurate iris segmentation. The inaccuracies correspond to
translational errors on the pupillary border of one (dashed lines) and three pixels (dotted lines).
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5. Conclusions

In this paper we analyzed the major role of the iris segmentation
stage in the error rates of three typical iris recognition methods.

We used three data sets from widely used iris databases (third
version of CASIA, first and second version of UBIRIS and ICE) to ana-
lyze the increase of the error rates when the iris is inaccurately
segmented. Having defined four types of segmentation errors
(translational and scale errors on the iris inner and outer borders),
we observed the most significant increment in the error rates
when translational errors occur, which can be explained by the fact
that this type of errors corresponds to errors in phase and make
components of the biometric signature to appear flipped.

According to these results, the development of methods to detect
inaccurately segmented irises should be relevant, essentially to
avoid the prosecution of the recognition processes to later stages.

Finally, we observed that the increment in the error rates is di-
rectly proportional to the amplitude of the segmentation inaccura-
cies, either in the highly noisy database of visible wavelength
images (UBIRIS) and the less noisy iris databases of near infra-
red images (CASIA and ICE).
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