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Abstract— Corner detection has been motivating several
research works and is particularly important in different
computer vision tasks, acting as basis for further image un-
derstanding stages. Particularly, the detection of eye-corners in
facial images is relevant for domains such as biometric systems
and assisted-driving systems. Having empirically evaluated the
state-of-the-art of eye-corner detection proposals, we observed
that they only achieve satisfactory results when dealing with
good quality data. Hence, in this paper we describe an eye-
corner detection method with particular focus on robustness,
i.e., the suitability to deal with degraded data, toward the
applicability in real-world conditions. Our experiments show
that the proposed method outperforms others either in noise-
free and degraded data (blurred, rotated and with significant
variations in scale), which is regarded as the main achievement.

I. INTRODUCTION
A corner is defined by the intersection of at least two

edges. For decades, it was believed that most primitives of
the human visual system were based in the detection of such
type of interest points, which have a well-defined position.
Corner detection is known to have particular relevance in
computer vision, as it is often used as starting point to
other image understanding processes. Hence, different cor-
ner detection strategies were previously reported in image
segmentation, tracking, recognition and motion detection
systems.

In this paper we are particularly interested in the detection
of both the temporal and nasal eye-corners of facial images.
Eye-corners constitute relevant keypoints and the ability to
accurately pinpoint them is of great value in domains such
as biometrics and driving assistance systems. In the case
of biometrics, an emerging type of recognition is called
periocular and refers to the human recognition by making
use of data located in the vicinity of the eyes. The periocular
region is particularly useful when the quality of data diffi-
cults other recognition strategies: for un-cooperative subjects,
using visible light imagery and acquiring data from moving
subjects at-a-distance (e.g., [12], [10], [9], [15]).

Above all keypoints able to be extracted from the peri-
ocular region, we highlight eye-corners – the interceptions
between the upper and lower eyelids – as their position is
invariant to expression, levels of eye closure, gazed look,
eyelash and makeover. Having analyzed the state-of-the-
art about eye-corner detection, we concluded that published
methods lack of robustness and were devised to operate
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in good quality data. Moreover, we empirically observed
that these approaches tend to significantly deteriorate their
performance in real-world data, which heterogeneity is sig-
nificantly higher. Hence, this work proposes an eye-corner
detection method suitable for harsher environments, such
as uneven lighting conditions, rotated or blurred data, with
notorious differences in scale and levels of eye closure. Our
method uses as input a periocular image, segments the iris
and the sclera and defines a region-of-interest from where
candidate points are extracted. Then, multiple features are
linearly combined in an objective function which optimiza-
tion determines the pair of points deemed to constitute the
nasal and temporal eye-corners.

A. Related Work

Several approaches for the detection of eye corners
can be found in the literature: Harris and Stephens [6]
proposed a corner detection method of general purposes,
which is often used in the specific case of eye-corners
with satisfactory results in good quality data. Zheng et
al. [17] estimated an initial region-of-interest from integral
projections and located eye-corners according to a bank
of Gabor-based filters, convolved at five different scales
and orientations, which averaged outputs yielded the final
detection kernel. A deepen description of this strategy can
be found in [18]. Khosravi and Safabakhsh [7] localized
eye-corners in gray data, starting from the deemed center
of the iris and selecting two points on its scleric boundary
at symmetric angles. Next, they found points on eyelids,
according to local differences in brightness, and used four
masks to define motion direction. Xu et al. [16] used the
approach of Harris to select candidate points, and then
parsed them combining semantic features using logistic
regression. However, this method relies on image edges,
hard to obtain in unconstrained acquisition environments.
Haiying and Gouping [5] propose the weighting of Harris’
response function with the variance projection function,
achieving a more robust system for frontal images with
no significant lighting variations nor rotation. The variance
projection function itself was proposed for similar purposes
by Feng and Yuen [4]. More recently, Erdogmus and
Dugelay [3] proposed a method that achieves good results
on frontal images, but also heavily relies on edge detection,
and eye-corners result from the interception of polynomial
functions fitted to these edges.

The remaining of this paper is organized as follows: in
Section II we describe our method with detail; Section III



presents our experiments and discusses the obtained results,
with emphasis to the robustness factor. Finally, Section IV
states the conclusions.

II. PROPOSED METHOD

A. Iris Segmentation and Definition of the Region-Of-Interest

(a) Eye image (b) Iris segmentation mask

Fig. 1. Data used as input by our method.

As illustrated in figure 1, our method receives as input
a periocular image and the fist step is to obtain the cor-
responding noise-free iris binary segmentation mask. This
mask discriminates between the noise-free regions of the iris
and all the remaining data and was obtained as described by
Tan et al. [14], which is known to operate in real-world data.
Also, this iris segmentation algorithm was selected because
it outperformed in the NICE.I contest 1. The segmented
iris data is represented by black regions of figure 1(b) and
contain holes that correspond to the pupil and to occluded
iris regions. These holes were removed by zeroing out all the
regions unreachable when filling out the background from the
edges of the image, as described in [13].
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Fig. 2. Illustration of the regions of the eye evolved in our work. P , I
and S correspond to the pupil, iris and sclera. Pn and Pt are the nasal and
temporal eye-corners. Pu and Pl are both extremes of the region segmented
as iris, which were used by the proposed method.

Next, we aimed at defining a region-of-interest (ROI),
from where subsequent processing should be done. This
region is illustrated in figure 2 and was obtained by crop-
ping the input image and the segmentation mask, avoiding
unneeded regions, such as the eyebrow and skin underneath
the eye. Having an input image of dimensions M ×N0, this
yields regions of M×N1 dimensions, according to horizontal

1NICE.I: Noisy Iris Challenge Evaluation - Part I http://nice1.di.
ubi.pt

projection techniques and assuring that the ROI comprises
the extreme coordinates of pixels belonging to the iris (Ps
and Pi of Figure 2):

yu = max(yp)
yl = min(yp)

(1)

where y. are the row coordinates of all the pixels that
belong to the iris, obtaining ROIs similar to the illustrated in
Figure 3. To account for rotated data, the input images and
the corresponding iris segmentation masks were previously
rotated, so that the major axis of the iris regions became
horizontal, as it is known that lateral regions of the iris are
less susceptible to occlusions and that most of the times that
major axis will correspond to the direction of eye-corners.

(a) Input image (b) Filled segmentation mask

Fig. 3. Initial ROI and corresponding filled iris segmentation mask.

B. Sclera Segmentation

The localization of regions that correspond to the sclera
inside the ROI is a key issue of our method, as both eye
corners should be adjacent to the sclera. Also, it is known
that pixels belonging to the human sclera have particularly
low levels of saturation, which is illustrated by figure 4. This
left image gives the saturation channel of the HSV colorspace
(Figure 4(a)), and the right one shows the result of the con-
volution with an unidimensional horizontal median filter [8]
for eyelash attenuation, followed by data quantization and
histogram equalization (Figure 4(b)). From this example, it
is notorious that sclera were turned more homogenous and
with evidently lower intensities, enabling its classification by
empirically adjusted thresholds.

(a) Saturation values (b) 12 level histogram equalization

Fig. 4. Sclera enhancement.

C. Eye Contour Approximation

Having segmented the iris and sclera, the next stage
comprises the approximation of the eyelids contour. This was
performed in two steps: 1) morphological dilation of the iris
segmentation mask with an horizontal structuring element,
which will horizontally expand the iris regions and 2) point-
by-point multiplication between the dilated and the enhanced
data illustrated in figure 4(b), as described by Caselles [2],
obtaining images similar to the illustrated in figure 5(b),
and which boundary constitutes a good approximation to the
eyelids contour.



(a) Starting image (b) Result

Fig. 5. The deemed eyelid contour corresponds to the boundary of the
region signaled by black pixels.

D. Generation of Eye-Corner Candidates

This stage comprises the generation of a set of candidate
points for the position of eye-corners, which was performed
by using the approach of Harris and Stephens [6]. However,
having observed a high probability of producing too many
false positives, this detector was exclusively applied inside
the nasal (Rn) and temporal (Rt) regions, cropped from the
extremes of the major axis of the sclera mask, as illustrated
in figure 6).

Rt Rn

Fig. 6. Approximation of the eyelid contour (white snake) and regions from
where corner candidates are extracted (represented by white rectangles).

E. Feature Set

This stage aims at finding appropriate features to dis-
criminate between the set of corner candidates. Also, it
constituted our concern that such feature set would be robust
to differences in translation, rotation, scale, affine-transform
and blurred data. In all subsequent descriptions, we consider
{ci}ni=1, ci = (xi, yi), the set of eye-corners candidates.

a) Harris Pixel Weight H(Pc): Considering that all
candidates were generated according to the Harris and
Stephens method, it is straightforward to include the cor-
responding score in the proposed feature set. This score is
given by:

H = |M | − k tr(M)2 (2)

where |.| denotes matrix determinant, tr(.) is the trace of a
matrix and M is the Hessian matrix obtained from a blurred
version of the original data:

M(x, y) =

[
G2
u(x, y) Guv(x, y)

Guv(x, y) G2
v(x, y)

]
being G(x, y) = I(x, y) ⊗ h(x, y), with h(x, y) =

1
2π exp

(
x2+y2

2

)
and ⊗ denotes convolution.

b) Internal Angles: Let B = {bi}ki=1, bi = (xi, yi) be
the set of pixels belonging to the eyelid boundary, obtained
as described in section II-C. An ellipse fitted to B points is
parameterized in the following way:

E = (xe, ye) +Q(γ).

[
A. cos(σ)
B. sin(σ)

]
(3)

where (xe, ye) is the ellipse central point, Q(γ) a rotation
matrix and A and B are the lengths for the major and
minor axis respectively. Two sets of pixels located along the
opposite directions of the ellipse’s minor axis are given by:

bl =
(
xe − cos

(
γ − π

2

)
.B, ye − sin

(
γ − π

2

)
.B
)

(4a)

bu =
(
xe + cos

(
γ − π

2

)
.B, ye + sin

(
γ − π

2

)
.B
)

(4b)

For every candidate point ci, two vectors −→u = ci−bu and
−→u = ci − bl were obtained (Fig. 7), and their internal angle
θ(ci, E) given by:

θ1(ci, E) = arccos

(
〈u, v〉
||u||.||v||

)
(5)

where 〈u, v〉 is the dot product between u and v, and || · ||
denotes the norm of a vector.

Fig. 7. Approximation of the eye contour (white snake). Example of a
candidate point and of the vectors from where the internal angle θ1(ci, E)
is obtained.

Let m1 be the slope of the ellipse major axis, and m2 the
slope of the line connecting (xe, ye) and the candidate point
ci:

m2 =
ye − yi
xe − xi

(6)

Their internal angle measures the agreement between the
directions of the ellipse major axis and the straight line that
passes in the candidate point and ellipse center:

α2(ci, E) = arctan

(
m2 −m1

1 +m1.m2

)
(7)

Finally, considering that we are interested in pairs of eye
corners, we found useful to obtain a feature that relates any
two candidates as a pair, instead of scoring them indepen-
dently. Let ci1 and ci2 be two corner candidates, one from
the temporal and other from the nasal region and l12 the line
that passes through both points. If the plausibility of both
candidates is high, the direction of l12 should be similar
to that of the major axis of the previously defined ellipse
E. Thus, according to (7), we obtained the internal angle
between these vectors (α3(ci1, ci2, E)).

c) Positions in ROIs: A complementary type of features
measures the relative position of each candidate in the ROIs,
i.e., the proportion of pixels inside the ROI that are above
each candidate. This feature is given by:

p(ci, R) =

∑N1

i=xi

∑M
j=1 I{(i,j)∈R}∑N1

i=1

∑M
j=1 I{(i,j)∈R}

(8)

where I{.} is an indicator function.



d) Relative Distances: This type of feature considers
the distance between each candidate point ci and the ellipse
center:

d1(ci, E) =

√
(xi − xe)2 + (yi − ye)2

A
(9)

where (xe, ye) denotes the coordinates of the center of
the ellipse and A the length of the ellipse major axis, to
compensate for the imbalance in acquisition distance and
eye size

Let −→va be a vector with the same direction of the major
axis of the ellipse and p1 = (x1, y1) and p2 = (x2, y2) be
the antopodal points of the ellipse. Let ptan = (xtan, ytan)
be a point tangent to the ellipse that belongs to a line that
passes through ci:

xtan = x1 + u(x2 − x1)

ytan = y1 + u(y2 − y1)
(10)

being u given by:

u =
(xc − x1)(x2 − x1) + (yc − y1)(y2 − y1)

||p2 − p1||2

The Euclidean distance between ptan and each candidate
ci (d2(ci, ptan)) was also added to the feature set.

e) Interception of Interpolating Polynomials: The nasal
and temporal eye corners can be regarded as the interceptions
between the upper and lower eyelids. Due to this, we
parameterized two lines, each one corresponding to one
eyelid. The interceptions t of both polynomials are illustrated
by figure 8 and give a rough estimate of the nasal and
temporal eye corners. According to our observations about
the typical shape of eyelids, we decided to use second and
third degree polynomials to fit the contours from the lower
and upper eyelid. Thus, the Euclidean distance between each
candidate and the interception point of the corresponding
ROI (d3(ci, t)) also acts as a measure of goodness for each
candidate.

Fig. 8. Interpolating polynomials of order two (lower eyelid) and three
(upper eyelid). The interception points of both polynomials constitute a good
approximation to the eye corners.

F. Objective Function

According to the description given in section II-E,
the proposed feature set is composed by seven features
F={h(ci), θ1(ci, E), θ2(ci, E), p(ci, R), d1(ci, E), d2(ci, E),
d2(ci, ptan), d3(ci, t)}, which should be fused to produce
the final score. Having two sets of corner candidates (nasal

and temporal), the final score for every pair of nasal cn and
temporal ct candidates is given by the weighted sum of
these features:

Γ(ct, cn) =

7∑
i=1

βi fi +

14∑
j=8

βj fj−7 (11)

where {β1, . . . , β14} are regularization terms adjusted to
maximize performance in a training set. This optimization
procedure was handled by linear regression and these terms
were adjusted so to minimize the mean squared error between
the predicted values and the ground-truth data, using Akaike
criterion [1]:

J(ct, cn) = (Γ(ct, cn)− g(ct, cn))2 (12)

where g(ct, cn)) is the sum of the Euclidean distances
between the coordinates of the candidates and the ground-
truth data.

III. EXPERIMENTS

A. Datasets

The performance of the proposed method was assessed on
right-eye images of the UBIRIS.v2 database [11]. Images
have dimensions 400 × 300, were acquired from moving
subjects, in visible wavelengths, at different distances and
varying lighting conditions. Also, their quality is degraded
by different factors, such as blur, motion, rotation and gaze.
In order to check the degradation in performance with respect
to each factor, five dataset configurations were used and are
illustrated in Figure 9:
• Frontal – contains 300 images with the subjects gaze

aligned to the camera;
• Deviated Gaze – 200 images where the subjects’ head

was deviated;
• Blur – images with an artificially made 50 pixel length

motion blur, in π/4 direction;
• Clockwise rotation (CR) – images artificially rotated by
π/8 clockwise;

• Counter-clockwise rotation (CCR – same as the previ-
ous, with counter-clockwise rotation.

For the Blur, CR and CCR experiments, selected images
of the UBIRIS.v2 were not enough and variations were
artificially made by image processing software, starting from
the frontal subset. For all images, the ground-truth data
was manually made by different experts, in order to reduce
subjectivity.

B. Results

According to the analysis to the previously published
research works, the type of data they aim to deal with and
the results given by authors, we decided to compare the
performance of our method to the Haiying and Guoping [5]
and Erdogmus and Dugelay [3] strategies. Also, as we
found that one of the proposed features (Interception of
polynomials) constitutes a strong estimator even when used
alone, we decided to include it in our comparisons (Polyfit



I.). All the error values given in this section correspond to
the Euclidean distance between the estimated location for
the eye-corners and the true location, obtained by manual
annotation of all the images in our datasets.

Figure 10 gives the results obtained for frontal images,
which is clearly the data subset that appearance that most
closest resemble the type of data the other methods aim to
deal with. Fig. 10(a) gives the global detection rates and
Figures 10(b) and 10(c) specifies the results obtained for the
temporal and nasal eye-corners. The horizontal axes denote
the error values and the vertical axes give the proportion
of images with at most the corresponding error. From its
analysis, it is evident that the proposed approach clearly
outperformed in frontal images. If the analysis is performed
separately for nasal and temporal corners, we observed
that for the temporal region the polynomial interpolation
interception was better than the Erdogmus and Dugelay
method, and in most cases comparable to the proposed
method. Regarding the nasal corners, we observed that all
methods behave similarly for small error values, whereas our
proposal is notoriously better for moderate and large error
values (larger than 25 pixels).

For comprehensibility purposes, Figure 11 compares the
boxplots of the error values observed for the proposed
method and others used as comparison term, in the temporal
(black bars) and nasal (gray bars) corners. We show the
median of the observed performance range (horizontal solid
lines) and the first and third quartile values of the obser-
vations (top and bottom of the box marks). The upper and
lower whiskers are denoted by the horizontal lines outside
each box, and the outliers are denoted by dot points. This
plots highlights that methods are generally more efficient in
detecting the nasal eye-corner, with exception to the Erdog-
mus and Dugelay strategy. Again, the better performance of
our proposal, when compared to others, is evident.

Another interesting analysis comprises the levels of corre-
lation between the outputs given by the compared strategies.
Here, we assumed that correlation will at most be linear,

(a) Frontal (b) Deviated Gaze

(c) Motion Blur (d) Clockwise Rotation

Fig. 9. Sample images from the different datasets.

TABLE I
PEARSON’S CORRELATION COEFFICIENTS BETWEEN THE COMPARED

METHODS.

Proposed Polyfit I. Haiying G. Erdogmus D.
Proposed 1 - - -
Polyfit I. 0.815 1 - -
Haiying G. 0.796 0.684 1 -
Erdogmus D. 0.066 0.045 0.045 1

which justifies the use of the Pearson’s correlation coefficient
and is a reasonable practice in biometric systems research.
Table I gives such values, from where the higher similarity
between the outputs given by the proposed strategy and
the one of Haiying and Guoping is evident. Interestingly,
Erdogmus and Dugeley showed remarkable low levels of cor-
relation, which from our viewpoint will give the opportunity
for further improvements, if both strategies are fused.

C. Analysis of Bias

In order to analyze the errors that are predominant in the
outputs given by each method, for each case we obtained
a vector −→v = (m, θ), where m is the the Euclidean dis-
tance between the estimated (xe, ye) and true (xt, yt) corner
position and θ is the arctangent of (xe − xt, ye − yt). The
relative frequency of such values is given in Figure 12, where
teh horizontal axes denote angle and the vertical denote
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(b) Temporal Region
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(c) Nasal Region

Fig. 10. Detection rate on frontal images.



magnitude. It can be observed that deviations of the proposed
method and of the polynomial interpolation interceptions are
homogeneously distributed in all directions, slightly deviated
to the [0, π2 ] interval. Considering that our datasets were
composed exclusively by right eye images, this means that
estimates tend to be biased NorthEast of the true eye-corners.
On the nasal region, the prediction tends to be closer to the
center of the eye than the true location. This fact is specially
evident for the estimates of the method of Haiying and
Guoping. Regarding the Erdogmus and Dugeley approach,
temporal deviations were observed more sparse, with slight
predominancy to the right of the true corner. For the nasal
region, whereas the other methods seem to have a clear bias
to the center of the face, deviations spread over all directions.
This atypical behavior shown by the Erdogmus and Dugeley
method on both regions is probably due to the fact that, being
heavily dependent on edge detection, it is also considerably
affected by data degradation. It is interesting to note that such
distributions of deviations are in concordance to the observed
correlation values, where a higher similarity between the
proposed method, the interception of polynomials and the
Haying and Guoping methods was observed.

Proposed Haiying & G. Polyfit I. Erdogmus & D.
0

50

100

150

200

250

300

D
is

ta
nc

e 
(p

ix
el

s)

Fig. 11. Distances between the predicted corners and the true locations,
on frontal images. Black and gray represent the temporal and nasal regions
respectively.

D. Robustness to Variations in Data

Robustness is a key issue of the proposed method and we
aimed to assess the decreases in performance when the qual-
ity of the data is degraded by different factors. In this analysis
we decided to exclusively compare the results obtained by the
proposed method to the approach of Haiying and Guoping’s,
as this it was the one with performance closest to ours and is
considered a state-of-the-art approach. Figure 13 summarizes
the obtained error values in data set, where the images were
notoriously degraded by the corresponding factor. The black
boxplots denote the results of our method and the gray bars
those of Haiying and Guoping. From its analysis, one can
conclude about the higher stability of the performance of our
method across the different data sets, as average error values
are steady and under 50 pixels. Oppositely, the method of
Haiying and Guoping notoriously degraded its performance
when handling rotated iris data, simoultaneoulsy augmenting
its variance.

Figure 14 highlights such decreases in performance and
gives the detection rates with respect to the error value (in
pixels). Here, it is specially evident the highest slope of
our method’s performance plots for small errors, which may
indicate that large errors in the estimates are quite unlikely,
in opposition to the values observed for the other strategy.

1) Blur: Acquiring sharp data in less controlled acqui-
sition environments is an issue, as slight movements of
subjects often correspond to severely blurred data, in result of
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Fig. 12. Relative frequencies of the observed deviations between the
predicted and true positions of eye-corners. Left and right images are for
the temporal and nasal corners respectively.
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Fig. 13. Distance from the different methods outputs to the actual eye-
corners on frontal images. Black and gray represent the proposed method
and Haiying and Guoping’s respectively.



0 25 50 75 100 125 150 175 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance (pixels)

D
et

ec
tio

n 
R

at
e

 

 

Frontal
Focus
Affine T.
CW Rot.
CCW Rot.

(a) Proposed Method

0 25 50 75 100 125 150 175 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance (pixels)

D
et

ec
tio

n 
R

at
e

 

 

Frontal
Focus
Affine T.
CW Rot.
CCW Rot.

(b) Haiying and Guoping

Fig. 14. Detection rate in function of the distance for all image variations.

small depth-of-focus ranges. For such, the ability of handling
blurred data is a desirable property of any robust corner
detection method. We observed that our method only slightly
decreased its performance, whereas Haiying and Guoping’s
performed better in blurred data than in the focused images.
The minor degradation in performance of our proposal was
due to the stage that defines the ROIs, as illustrated in
Figure 15: edges become less prominent in blurred data,
the region growing process stops at different iterations and,
consequently, the candidate search areas are also different.
This, coupled with the fact that the blur also degrade the per-
formance of the method used for the extraction of candidates,
lead to a worst outcome.

2) Deviated Gaze: Gaze is another important factor in
less controlled acquisition environments, as it is expected that
most of the times, subjects head and eyes will not be aligned
with the camera. In this case,we our method behave robustly,
which was regarded as extremely positive and may indicates
a good behavior on such type of data. Specially, there was a
typical case where our method had better performance: when

(a) Sample 1

(b) Sample 2

Fig. 15. Extraction of candidate points in frontal images and in the
corresponding blurred versions.

images have visible background, or those with notorious
facial elements (e.g., nasal bone). Figure 16 illustrates such
cases and stresses the robustness of the proposed method to
deviations in gaze.

Fig. 16. illustration of the results typically obtained in gaze deviated
images. White squares and black circles represent our method and Haiying
and Guoping’s outputs respectively.

3) Rotation: Rotation is another case of special interest
and significant rotations in data are expected, in result of
different types of movements in the uncontrolled acquisition
scene. Again, our method showed a much more robust
behavior than the approach of Haiying and Guoping, which
significantly deteriorated its performance. We claim that this
is due to the vertical and horizontal variance projection
functions that produce highly different results in rotated
data and, consequently, bias further processing. This is
highlighted by Figure 17, where a visible predominant bias
in the opposite direction of rotation can be seen. This is
in opposition to our method, as illustrated in Figure 18,
where a different a behavior for each corner was observed:
in the nasal corner, vectors counteract the direction but
angles changes are minimal. Regarding the temporal corner,
prediction tends to follow the rotation with a larger angle
variation.

IV. CONCLUSIONS
Eye-corner detection concerns numerous researchers and

motivated different proposals, which were observed to sig-
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Fig. 17. Relative frequencies for the deviations of the Haiying and Guoping
in rotated data. Left and right images are for the temporal and nasal regions
respectively.
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Fig. 18. Relative frequencies for the deviations of the proposed method in
rotated data. Left and right images are for the temporal and nasal regions
respectively.

nificantly deteriorate their performance when dealing with
degraded data, acquired in less controlled setups. This gave
raise to a new proposal for the detection of eye-corners in
periocular images that simulate real-world data. We com-
pared the results obtained by our proposal to other state-
of-the-art methods and concluded that it consistently out-
performed, either when operating in noise-free and degraded
data (rotated, blurred, affine-transformed and with significant
differences in scale). Finally, it should be stated that such
improvements were obtained without significant increases
in the computational demands of the task, which was also
positively regarded, considering the real-time demands that
usually eye-corner detection techniques have.
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the results given in this paper, either the urls from where all

the data sets can be downloaded and the MATLAB R© source
code developed in the scope of this research work:

• MATLAB R© source code. The code implemented
during the development and test of our method
is available at: http://iris.di.ubi.pt/
cornerDetection/Source.zip, pre-compiled
in ”.p” files, for MACOS environments.

• Data sets. A description of all the images included
in any data sets used in this paper can be
downloaded from http://iris.di.ubi.pt/
cornerDetection/Datasets.zip, together
with the corresponding ground-truth data.
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