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Chapter  12

Using Ocular Data for 
Unconstrained Biometric 

Recognition

ABSTRACT

There are several scenarios where a full facial picture cannot be obtained nor the iris properly imaged. 
For such cases, a good possibility might be to use the ocular region for recognition, which is a relatively 
new idea and is regarded as a good trade-off between using the whole face or the iris alone. The area in 
the vicinity of the eyes is designated as periocular and is particularly useful on less constrained condi-
tions, when image acquisition is unreliable, or to avoid iris pattern spoofing. This chapter provides a 
comprehensive summary of the most relevant research conducted in the scope of ocular (periocular) 
recognition methods. The authors compare the main features of the publicly available data sets and 
summarize the techniques most frequently used in the recognition algorithms in this chapter. In addition, 
they present the state-of-the-art results in terms of recognition accuracy and discuss the current issues 
on this topic, together with some directions for further work.
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1. INTRODUCTION

The face and the iris are among the most popular 
traits for biometric recognition, and are – together 
with the fingerprint – the most frequently reported 
in the specialized literature (Bowyer, Holling-
sworth, & Flynn, 2008; Zhao et al. 2000).

The iris has a predominantly randotypic 
morphogenesis, unique for each individual, and 
allows very high recognition accuracy. Also, it 
is a protected organ visible from the exterior, 
justifying the efforts on “relaxing” its acquisition 
setup (Santos & Hoyle, 2012; Shin et al., 2012; 
Tan, Zhang, Sun, & Zhang, 2012).

The face has been traditionally regarded as 
the main trait to perform recognition under less 
controlled conditions. However, several draw-
backs significantly decrease the effectiveness of 
face-based recognition systems: 1) due to its 3D 
structure, substantial differences in appearance 
are expected with respect to subjects’ poses; 2) 
large regions of the face are often occluded, in 
case of non-orthogonal data acquisition; 3) facial 
expressions notoriously affect the appearance of 
the face; 4) disguising is particularly easy.

According to the above, growing attention 
has been paid to other traits potentially useful for 
biometric recognition. Among these, the use of 
information in the vicinity of the eye (the periocu-
lar region) has been gaining in popularity. Being 
particularly useful on less constrained scenarios, 
when image acquisition is unreliable, or to avoid 
iris pattern spoofing, the periocular region does 
not require constrained close capturing or user 
cooperation, it’s relatively stable, when compared 
to the whole face, and rarely occluded. Due to the 
proximity with the iris, both can be easily acquired 
with a single camera and fused at the score level 
to compensate for environmental adversities and 
uncooperative subjects.

The usage of periocular information has even 
proven itself to be of importance in scenarios 
where the face has been reshaped (e.g. plastic 
surgery), with interesting results (Jillela & Ross, 
2012; Bhatt, Bharadwaj, Singh, & Vatsa, 2013).

The idea of periocular recognition came from 
the ability of humans to recognize someone by his 
/ her eyes, which are known to provide substantial 
amounts of discriminating information that is 
relatively stable over lifetime. Hence, the term 
periocular biometrics refers to the development 
of recognition methods that analyze not only the 
iris structure, but also the shape of eyelids, the 
distribution of eyelashes, the texture of the sclera 
and of the skin surrounding the eye to perform 
recognition.

This chapter provides an overview of the most 
relevant attempts to perform biometric recognition 
in uncontrolled acquisition environments, using 
information in the periocular area. We summarize 
the most relevant methods in the literature and 
compare the techniques most frequently reported 
for each of the typical processing phases: segmen-
tation, quality assessment, feature encoding and 
matching. Next, we describe the data sets that are 
publicly available and used in the evaluation of 
algorithms, and report the state-of-the-art recogni-
tion rates that act as reference values for further 
improvements on this technology.

The remainder of this chapter is organized 
as follows: Section 2 overviews the anatomic 
and biological features of the periocular region. 
Section 3 compares the main characteristics of 
the data sets used in periocular recognition ex-
periments. A comprehensive review of the most 
relevant papers published in this scope is given in 
Section 4. Section 5 reports the current state-of-
the-art results and Section 6 discusses the issues 
and challenges that are currently associated to the 
periocular recognition process. Finally, Section 7 
concludes this chapter.
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2. PERIOCULAR ANATOMY 
AND STRCTURES

Not only the superficial features of the skin deter-
mine the facial appearance, but also the concavities 
and convexities conferred by the underlying bones 
and muscles play a significant role. In particular, 
the periocular region comprises many anatomic 
features and landmarks that potentially fit for 
recognition purposes (Figure 1).

Centered on the eye, which is located on the or-
bital aperture, the periocular region has its creases 
and sulcus decided essentially by four bones: 1) 
the frontal bone, ending with the supraorbital 
process where the eyebrow is located and which 
affects its appearance; 2) the nasal bone, defining 
the upper part of the nose; 3) the lacrimal bone, 
that forms the cavity for the tear gland; and 4) 
the zygomatic bone, also known as cheek bone.

Although bone structure directly impacts facial 
appearance, most of the studied features rely more 
on muscle and skin specifications, and less on 

bone level properties, which would be less prone 
to both natural (e.g. aging) and external changes 
(e.g. plastic surgery).

Eyebrows constitute the foundation for eye-
lids, and are straighter on men and more arched 
on women. Eyebrow thickness changes among 
ethnicities and, with the aging process, their ori-
entation and height also change. Concerning the 
eyelids, their contours depend on gender, ethnic 
group and age, and dimension intervals are defined 
in previous studies (Tan, Oh, Priel, & Korn, 2011).

Even considering this richness of ocular ele-
ments, the features actually being used on peri-
ocular biometrics algorithms are quite simple and 
can be divided into two levels, as suggested by 
Woodard, Pundlik, Lyle, and Miller (2010a): 1) 
the first level comprises eyelids, eye folds, and 
eye corners, and 2) the second level comprises 
skin texture, wrinkles, color and pores. This sim-
plicity might be due to the relative novelty of the 
field: having passed only a couple of years since 
the first relevant study on periocular recogni-
tion, the earliest recognition algorithms firstly 
employed classical techniques in the computer 
vision domain-of-knowledge, before attempting 
more sophisticated / specific methods.

3. DATA SETS

Due to the novelty of the use of the periocular 
region to perform biometric recognition, only a 
few data are publicly available. Hence, an issue is 
the lack of datasets specifically designed for the 
development of periocular recognition methods. 
Due to this, researchers usually resort to face and 
iris databases, being the most relevant given on 
Table 1 and illustrated on Figure 2. We report 
the number of images and subjects available per 
dataset, the dimensions of the images and the 

Figure 1. Anatomic features on the periocular 
region
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main variability factors in each one, which play 
an extremely important role in the evaluation of 
the robustness of recognition algorithms.

•	 FERET: The Facial Recognition 
Technology (FERET) database (Phillips, 
Moon, Rizvi, & Rauss, 2000), designed as 
a standard for developing face recognition 
methods, was acquired at George Mason 
University over eleven sessions and a three 
years period (1993 to 1996). It was initially 
released as low resolution (256 × 384 pix-
els) grayscale data, and only later a high-
resolution color version was also disclosed. 
Contains a total of 14051 images, gathered 
from 1199 different subjects within a semi-
controlled acquisition protocol with strict 
expression, pose and illumination changes.

•	 FRGC: Collected at the University of 
Notre Dame, the Face Recognition Grand 
Challenge (FRGC) database (Phillips et 
al., 2005) consist of high resolution (≈ 
1200 × 1400 pixels) color still images, 
captured on both controlled and uncon-

trolled environments. The controlled setup 
was assembled at a studio with uniform il-
lumination, where subjects were requested 
to stand still, look strait at the camera, and 
essay sequentially both neutral and smiling 
expressions. As for the uncontrolled acqui-
sition, images were shoot in different sce-
narios, disregarding both background and 
illumination.

•	 UBIRIS.v2: The UBIRIS.v2 is a uncon-
strained iris database (Proença, Filipe, 
Santos, Oliveira, & Alexandre, 2010), 
captured on the visible wavelength from 
moving subjects, at different distances and 
challenging illumination conditions, thus 
simulating realistic acquisition issues and 
the related noise factors. Data from both 
eyes is separately available, as well as the 
surrounding periocular data, thus allow-
ing to stress out periocular methods, and 
even their fusion with iris recognition 
techniques.

•	 UBIPr: As an effort to advance periocu-
lar biometric research, the UBI Periocular 

Table 1. Summary of dataset specifications. Variations abbreviations refer to Distance (D), Expression 
(E), Illumination (I), Occlusion (O) and Pose (P) 

Name # of Images # of Subj. Image Dimension Variations

FERET 14051 1199 512 × 768 E, I, P

FRGC 36818 741 ≈ 1200 × 1400 E, I

MBGC 149 AVI 114 2048 × 2048 D, E, I, O, P

UBIRIS.v2 11102 261 800 × 600 D, O, I

UBIPr 10950 261 Multiple D, O, I, P

FG-NET 1002 82 ≈ 400 × 500 D, E, I, P

Figure 2. Sample images that illustrate the datasets typically in the evaluation of periocular algorithms
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Recognition (UBIPr) dataset (Padole & 
Proença, 2012) allows to evaluate periocu-
lar methods at “higher levels of heteroge-
neity,” as noise factors were actually in-
troduced on the acquisition setup: varying 
acquisition distance, irregular illumina-
tion, pose and occlusion. In addition, man-
ual database annotation includes regions-
of-interest and essential landmarks. Image 
dimensions vary accordingly to the acqui-
sition distance, and range from 501 × 401 
pixels (at 8m) to 1001 × 801 pixels (at 4m).

•	 FG-NET: The FG-NET is a facial aging 
database with around one thousand im-
ages from 82 subjects, up to 69 years old. 
Captured at different acquisition setups and 
many years apart, it is clear how subjects 
were shoot under very irregular illumina-
tion, pose and expression conditions.

•	 Images are 400 × 500 pixels in size, cap-
tured on the visible wavelength, and for 
each one a 68 landmark points annotation 
is also provided.

Recently, Cardoso et al. (2013) developed an 
algorithm for synthesizing degraded ocular im-
ages. Considering that the collection of data for 
biometric experiments is particularly hard due 
to security / privacy concerns of volunteers and 
the substantial amounts of data required, they 
described a stochastic method able to generate 
a practically infinite number of iris images with 
a singular characteristic: simulating image ac-
quisition under uncontrolled conditions. Hence, 
the generated images have eight varying factors: 
optical defocus, motion blur, iris occlusions, gaze, 
pose, distance, levels of iris pigmentation and 

lighting conditions (Figure 3). Particular attention 
was paid for mimicking the dynamic conditions 
in uncontrolled lighting environments, by using 
“cube-maps” that replicate different environments 
that (potentially) surround the simulated subjects. 
Also, authors announced the availability of an 
online platform1 where anyone has the possibility 
to adjust the levels of variability desired for each 
of the above factors, and define the main prop-
erties of the artificial data sets. This tool might 
constitute a valuable resource for the evaluation of 
the robustness of iris segmentation / recognition 
algorithms, and is available in a completely free 
and anonymous way.

4. RELEVANT RESEARCH

In this section we summarize the most relevant 
techniques published in the scope of periocular 
recognition. Also, we overview the algorithms 
published in adjacent areas, that can potentially 
be used to improve periocular recognition algo-
rithms, such as iris segmentation, image quality 
assessment, feature extraction and matching on 
ocular data.

4.1 Periocular Recognition

The pioneering approach for periocular biometrics 
dates back to Park, Ross, & Jain (2009), proposing 
to extract features at two different levels: local 
and global, as information concerns patches of 
the periocular area, or is extracted from the whole 
image. For global feature extraction, images are 
properly aligned, using the location of the iris 
and its dimensions as reference, and defining a 7 

Figure 3. Examples of artificial images of the ocular region generated by the NOISYRIS platform
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× 5 grid of square regions-of-interest. Although 
authors acknowledge eye corners to be more fit 
for such task (Park, Jilela, Ross, & Jain, 2011), 
they claim that such points cannot be reliably 
determined. Then, two well-known distribution-
based descriptors, namely Histogram of Oriented 
Gradients (HOG) (Dalal & Triggs, 2005) and Lo-
cal Binary Patterns (LBP) (Ojala, Pietikäinen, & 
Harwood, 1996; Ojala, Pietikäinen, & Harwood, 
1994), are computed for each region-of-interest 
independently, and quantized into 8-bin histo-
grams combining shape and texture information. 
The array comprising such histograms is easily 
matchable to an identical one (from another im-
age), by simply computing the Euclidean distance. 
As for the local features, Scale-Invariant Feature 
Transform — SIFT (Lowe, 2004) allows the de-
tection of a set of key-points, encoded with their 
surrounding pixels information, and compared 
against their counterparts from another image. 
This descriptor offers invariance to translation, 
scaling and rotation. The authors conducted their 
tests over a “small” (899 images, 30 subjects, 2 
sessions) database of frontal periocular images 
acquired in the visible wavelength of the electro-
magnetic spectrum, and reported performances 
ranging from 62.5% using only HOG features 
to 80.8% when fusing them with SIFT results. 
Curiously, combining the three features didn’t 
improved those results, setting joint performance 
at 80%. Recognition using the whole face, for the 
same database, achieved 100% Rank-1 accuracy.

On a later work, Park, Jilela, Ross and Jain 
(2011) went further on stressing periocular rec-
ognition by analyzing performance impact of 
several factors: eyebrow inclusion or disguising, 
automatic segmentation, side information, iris and 
sclera masking and expression variation. Their 
results showed that adding eyebrow information 
improved SIFT results in almost 19%, although 
automatic OpenCV segmentation exhibited better 
performance with “eyebrow-less” data. Face side 
information, by other side, is almost irrelevant, 
with performance variations of about 1%. From 

the stressed variations, expression has a significant 
impacting over periocular recognition potential, 
except for SIFT, because of its robustness to distor-
tion. On the other side, this descriptor was the most 
disfavored on iris/sclera occlusion. Top accuracy 
for single classifiers was 79.45%, achieved using 
SIFT over unmasked data, manually segmented 
and including the eyebrow, when compared to 
images from the same side and expression. Com-
pared to their previous work (Park et al., 2009), 
score level fusion didn’t present a significant im-
provement. Recognition over non-ideal situations 
was also a concern, and authors compared their 
results with FaceVACS2 face recognition system 
marks — 99.77% recognition accuracy on “clear” 
facial images. Occlusions, for instance, led to 
significant performance drops (about 60% when 
occluding the lower part of the face), even for 
small occlusions on the periocular area. Without 
score fusion, the encoding methods singlehanded 
led to accuracies no greater than 25.97%, 20.51% 
and 10.12% respectively for 10%, 20% and 30% 
of periocular occlusion. Eyebrow modifications 
were also subject of testing, using the TAAZ3 tool 
to simulate makeover, and leading to 7.5% (LBP) 
to 10% (other descriptors) performance decay.

When facing subjects shoot with 15º to 30º 
head rotation, a 35% to 45% performance dete-
rioration was registered. Finally, authors pointed 
out another issue associated with the periocular 
region — its lack of stability over time. Images 
captured three months apart from each other appear 
to perform 15% worst, and 30% when captured with 
half-year gap. As further work, authors suggest 
several possible improvements: better alignment 
and matching methods; multi-spectral analysis; 
and the possibility of fusion with iris (or face) 
recognition methods.

Miller, Rawls, Pundlik, and Woodard (2010b) 
analyzed the skin texture by applying an Uniform-
LBP (ULBP), with further insights on each region’s 
impact on the recognition process. This LBP-based 
approach achieves “improved rotation invariance 
with uniform patterns and finer quantization on 
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the angular space” (Ojala, Pietikainen, & Mae-
npaa, 2002). Similarly to the previous approach, 
the periocular region is cropped proportionally 
to intra-eye distance, scaled to 100 × 160 pixels, 
and divided in a 7 × 4 region-of-interest grid. To 
avoid iris and sclera information influencing the 
results, an elliptical neutral mask is overlapped to 
the image. After histogram normalization, ULBP is 
computed for each region on an 8-pixel neighbor-
hood, producing 59 possible results that populate 
a histogram and the periocular signature array. 
Finally, Manhattan distance is used for matching. 
Experiments were conducted on subjects of FRGC 
and FERET datasets, for both eyes separately and 
combined, reporting 84% and 71% and 90% and 
74% recognition rates respectively.

The impact of image quality was addressed by 
Miller, Lyle, Pundlik, & Woodard, 2010a, over 
three factors: blur, resolution and illumination. 
Image preprocessing included a similar periocular 
crop and resizing (251 × 251 pixels), grayscale 
conversion, histogram equalization and eye mask-
ing, but instead of ULBP a base LBP was used. 
When blurring the data with a Gaussian filter 
convolution, the periocular performance over 
face was evidenced for high blur levels. A similar 
conclusion was reached when down sampling to 
40% of the original size. As for uncontrolled il-
lumination conditions, performance degrades to 
low levels, as local approaches (e.g. LBP) are not 
suited for irregular lighting conditions.

The authors also compared the discriminant 
capabilities of the different color channels. The 
green channel leads to higher differentiation (23% 
higher accuracy than the red channel), and has 
similar texture information as the blue channel. 
Globally, authors concluded that performance 
achieved on the periocular region was better than 
using the whole face, having suggested the use 
of different classification methods, in particular 
Support Vector Machines (SVM) (Savvides et 
al., 2006).

Adams et al. (2010) extended Miller et al. 
(2010b) work, having used a Genetic & Evolu-

tionary Computing (GEC) method to optimize 
the original feature set, namely the Steady-State 
Genetic Algorithm (SSGA) as implemented by 
NASA’s eXploration Toolset for Optimization of 
Lauch and Space Systems4 (X-TOOLSS). Authors 
reported 86% accuracy for either eye on the FRGC 
dataset and 80% on FERET data, and top results 
of 85% and 92% for those databases respectively. 
Using only 49~52% of the original features im-
proved on, at least, 10%. Nonetheless, the chosen 
algorithm was not proven to be the optimal for 
that specific periocular features.

Inspired by Park et al. (2009), Juefei-Xu et 
al. (2010) expanded their experiments to less 
ideal imaging environments, having analyzed the 
performance of different feature schemes on the 
FRGC dataset.

In addition to LBP and SIFT, both local and 
global feature extraction schemes were stressed: 
Walsh masks (Beer, 1981); Laws’ masks (Laws, 
1980); Direct Cosine Transform (DCT) (Ahmed, 
Natarajan, & Rao, 1974); Discrete Wavelet 
Transform (DWT) (Mallat, 1989); Force Fields 
(Hurley, Nixon, & Carter, 2000); Speed Up Robust 
Features (SURF) (Bay, Ess, Tuytelaars, & Van 
Gool, 2008); Gabor Filters (Clausi & Jernigan, 
1996) and Laplacian of Gaussian (LoG). The LBP 
itself was fused with other methods, yielding the 
results given in Table 2.

Table 2. Rank-1 identification accuracy obtained 
with the fusion of LBP with other methods (Juefei-
Xu et al., 2010) 

Fused Methods Accuracy (%)

LBP + LBP 42.5

Walsh Masks + LBP 52.9

Laws’ Masks + LBP 51.3

DCT + LBP 53.1

DWT + LBP 53.2

Force Field Transform + LBP 41.7

Gabor Filters + LBP 12.8

LoG filters + LBP 30.9
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Authors show local descriptors to register better 
results, with the post-application of LBP translated 
into a performance boost. Although top accuracy 
was attained with DWT + LBP (53.2%), results 
were very similar when using DCT and Walsh or 
Laws’ masks. SIFT and SURF verification rate 
was surprisingly low (<1%), most likely due to 
low image resolution.

Juefei-Xu, Luu, Savvides, Bui, and Suen 
(2011) addressed the aging effect on periocu-
lar recognition, previously reported as an issue 
(Park et al. (2011)). Their approach starts by 
performing two types of corrections: pose, using 
Active Appearance Models (AAM); and illu-
mination, through anisotropic diffusion model. 
The periocular region was normalized from the 
provided landmark points, and features extracted 
using Walsh-Hadamard transform encoded LBP 
(WLBP). On a final stage, the unsupervised dis-
criminant projection (UDP) technique (J. Yang, 
Zhang, Yang, & Niu, 2007) boosted results to very 
high performance levels. This method was tested 
on the FG-NET database, with images taken years 
apart at different acquisition setups (non-uniform 
illumination, pose and expression). The reported 
results showed improvements in performance by 
20%, and WLBP to perform 15% better than raw 
pixel intensity matching. UDP also delivers better 
accuracy (up to 40%) than Principal Component 
Analysis (PCA) or Locally Preserving Projections 
(LPP). All the stages together resulted in 100% 
identification accuracy.

Bharadwaj, Bhatt, Vatsa, and Singh (2010) 
research on periocular biometrics was focused 
on unconstrained visible wavelength captured 
data (UBIRIS.v2 dataset), and tackled the ques-
tion combining ULBP with a global matcher — 
GIST — consisting on the combination of five 
perceptual scene descriptors (Oliva & Torralba, 
2001): naturalness, openness, roughness, expan-
sion and ruggedness.

ULBP was computed over 64 patches of the 
original image and, for the GIST, local contrast 
normalization was achieved with Fourier trans-

form and the special envelope computed using a 
set of Gabor filters. For match computation, Χ2 
distance and min-max normalized results from 
both eyes are fused by a weighted sum. GIST gave 
best performance than ULBP, and fusing both 
results led to 73.65% rank-1 accuracy.

To establish the slice of the electromagnetic 
spectrum that most favor periocular recognition, 
Woodard, Pundlik, Lyle, and Miller (2010a) evalu-
ated second level features on both NIR (MBGC) 
and visible-wavelength (FRGC) data. To avoid 
biased results, an elliptical mask was overlapped 
to the eye, removing the iris and sclera informa-
tion. On both datasets texture information was 
encoded using LBP over a ROI grid, and on the 
visible wavelength data this information was fused 
at score level with color information drawn from 
the red and green channels histograms. At the 
matching stage Manhatan distance was used for 
LBP histograms, and Bhattacharya distance for 
color histograms. Results suggest texture infor-
mation to be more discriminant, and only a slight 
improvement was registered after the fusion. As for 
the electromagnetic spectrum, visible wavelength 
data delivered better results (88~90% accuracy) 
than NIR (81~87%).

Subsequently, Woodard, Pundlik, Miller, Jil-
lela, and Ross (2010b) assessed how periocular 
texture information could improve iris data reli-
ability, so that difficulties when dealing with 
non-ideal imaging could be dealt with. Tests were 
conducted over MBGC data, which although 
being a NIR dataset, had challenging conditions 
for iris recognition. Iris processing was as of 
Daugman (1993), except with manual segmen-
tation, and after encoding texture information as 
above described, information from both traits was 
fused with a simple weighted sum after min-max 
normalization. Their work showed how iris’ low 
performance on such difficult data benefits from 
periocular fusion, raising rank-1 accuracy in over 
80%, to 96.5%.

In Woodard, Pundlik, Miller, and Lyle (2011), 
both studies were unified and extended, providing a 
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closer insight to their previous results. Once again, 
authors conclude periocular region performance to 
be comparable to the one obtained using similar 
features on the whole face.

Jillela and Ross (2012) take advantage of peri-
ocular region features to improve the identification 
performance of two commercial face recognition 
software over subjects that have submitted to 
plastic surgery. Inspired by Park et al. (2009), 
authors also use SIFT and LBP, even though this 
last one is computed for all color channels. Fusion 
is achieved at score-level, where all outputs are 
combined after a single score for LBP is averaged 
from individual color scores.

Tests were conducted over a plastic surgery 
database (Singh et al., 2010) consisting of images 
downloaded from plastic surgery information 
Websites, and thus with considerable changes in 
resolution, scale and expression. Results show 
periocular methods to have 63.9% rank-1 accuracy, 
and even though face recognition software over-
comes that with 85.3%, the best result is obtained 
when fusing both: 87.4%.

On stressing noise factors impact on periocular 
recognition, Padole and Proença (2012) tested on 
images with four inherent variations: subjects’ 
pose, distance to the camera (4m to 8m), iris 
pigmentation and occlusion. Choosing Park et al. 
(2009) method, they introduced some slight varia-
tions: the ROI was defined based on eye-corner 
position instead of iris center, which led to most 
significant improvements since unconstrained 
biometrics favor gaze variations; and at fusion 
stage both linear (logistic regression (Hosmer 
& Lemeshow, 2000)) and non-linear methods 
(Multi Layer Perceptron — MLP) were tested. 
Both fusing techniques produced similar results, 
being MLP slightly better though.

Interestingly, closer acquiring distances didn’t 
seem to lead to better performance. In fact, worst 
results came from comparisons between subjects 
imaged at 4 meters, being the “optimal” distance 
7m. Not so surprising was pose variation impact on 
recognition, with higher tilting angles resulting in 

lower accuracy values. Similar observations were 
found for the occlusion trials. Iris pigmentation 
was reported to also impact periocular recogni-
tion performance, with darker eyes leading to 
poorer results and medium pigmented irises the 
best ones. Subjects’ gender was also reported to 
impact recognition rates, being female more easily 
identified through their periocular features. The 
Human ability to use contextual information and 
“disregard” most of noise factors, adapting itself 
to surrounding conditions is outstanding, mark-
ing it a hard task for machines to mimic. In fact, 
when designed recognition algorithms we should 
rather try to figure out its way of working, seek-
ing alternate strategies to tackle the same issues.

Hollingsworth, Bowyer, and Flynn (2010) 
aimed at identifying which ocular elements 
humans find more useful for the periocular 
recognition task. On their essay, an iris camera 
was used to acquire NIR data from 120 subjects, 
being visible the periocular region closer to the 
eye although some features were missing (e.g. 
incomplete eyebrows). The iris were completely 
masked, to avoid biased responses, iris was masked 
with a circular patch, and 80 pairs of images were 
presented to 25 human observers, who were asked 
to tell apart pairs belonging to the same or differ-
ent persons, indicating their degree of certainty. 
Further to that, subjects had to individually rate 
each feature’s helpfulness in a three level scale.

Results pointed eyelashes to be the most helpful 
periocular feature, closely followed by the medial 
canthus and the eye shape. Participants based their 
responses on eyelash clusters, density, direction, 
length and intensity. To the inquired observers, 
skin was actually the less useful.

Average human accuracy on such setup was 
92%.

To extend that analysis to the visible spectrum, 
new factors and a wider dataset, another study 
was conducted by Hollingsworth et al. (2012). 
This time, periocular (Park et al., 2009) and iris 
(IrisBEE biometric system from ICE (Phillips et 
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al., 2010) recognition algorithms were also used 
for comparison.

Imaging 210 subjects on a controlled environ-
ment, 140 pairs of images were presented to 56 
observers for each one of four setups: NIR and 
visible wavelength, periocular and iris data. Test 
subjects could then rank their certainty on a five 
level scale, specifying how helpful individual 
features were (“eye shape,” “tear duct,” “outer 
corner,” “eyelashes,” “skin,” “eyebrow,” “eyelid,” 
“color,” “blood vessels” and “other”). Due to the 
different pairing system and limited observation 
time, NIR accuracy dropped to 78.8%, and it was 
set on 88.4% for the visible wavelength. Machine 
performance was similar, within 1% difference on 
overall accuracy. As for the feature discrimination 
capacity, results were similar to the previous ones 
(Hollingsworth et al., 2010) for NIR data, with 
some differences on the visible spectrum where 
blood vessels, skin and eye shape were reported 
to be more helpful than eyelashes. Skin details 
are in fact more perceptible on visible wavelength 
data, as NIR camera illumination caused frequent 
skin saturation. In general, visible band was found 
to be preferable for periocular recognition tasks.

Human perception of iris features is greater on 
NIR images, with 85.6% accuracy against 79.3 
on the visible wavelength. However, and unlike 
periocular, machine performance was 13% better 
than humans’, with 100% and 90.7% accuracy for 
those same bands.

4.2 Iris Segmentation

Considering that many techniques for segmenting 
the iris are based on Hough-transform param-
eterization, Junli et al. (2013) developed a robust 
ellipse fitting technique robust to noisy edge-maps 
that likely result of degraded data. Their algorithm 
starts by selecting a subset of the edge points that 
are deemed to be more accurate. Then, considering 
that squaring the fitting residuals magnifies the 
contributions of these extreme data points, their 
algorithm replaces it with the absolute residuals 
to reduce this influence. The resulting mixed l1-

l2 optimization problem is derived as a second-
order cone programming one and solved by the 
computationally efficient interior-point methods.

Specifically concerned about the segmentation 
of iris images acquired at large distances, Tan 
and Kumar (2012) were based in the concept of 
Grow-cut algorithm that is able to discriminate 
between foreground (iris) and background (non-
iris) data. The results from this phase are refined by 
post-processing operations: iris center estimation, 
boundary refinement, pupil masking and refine-
ment, eyelashes and shadow removal and eyelid 
localization. Experiments were performed in well 
known datasets (UBIRIS.v2, FRGC and CASIA.
v4 Distance) and confirmed the effectiveness of 
this approach. Moreover, the computational burden 
of the method appears to be substantially lower 
than of similar strategies.

Alonso-Fernandez and Bigun (2012) perform 
the segmentation of the iris based on the General-
ized Structure Tensor algorithm. The key point of 
this strategy is that, using complex filters, authors 
are able to obtain both magnitude and orientation 
information for each edge pixel. This provides an 
additional amount of information that enables 
to more appropriately discriminate between the 
edges that are deemed to belong to one of the iris 
boundaries and spurious edges.

Xinyu et al. (2012) addressed the problem of 
less intrusive iris image acquisition, in terms of 
a segmentation algorithm able to work at very 
different image resolutions (from 50 to 350 pixels 
in iris diameter). Authors start by detecting a set 
of edges (Canny detector), which non-connected 
components are considered nodes of a graph. 
Next, based on the normalized cuts criterion, they 
discriminate between the most probable circle-like 
shapes that correspond to the iris boundaries.

4.3 Noise Detection

In most iris recognition methods, it is particularly 
important to have an estimate of the regions of the 
iris that are occluded by other types of information 
(e.g., eyelids, eyelashes or reflections), and hence 
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should not be considered in the feature encoding 
phase. When such type of information is errone-
ously considered, most frequently the false rejec-
tion rates augment, but even the number of false 
acceptances can raise, if no adaptive thresholds 
with respect to the amount of un-occluded irises 
are not used.

According to the above observations, several 
authors addressed the problem of discriminating 
the useful parts of the iris images. Having consid-
ered that previous approaches are rule-based and 
have questionable effectiveness, Li and Savvides 
(2012) used Gaussian Mixture Models to model 
the probabilistic distributions of noise-free and 
noisy regions of the irises. The idea is to adjust 
the number of Gaussians for a distribution, by 
eliminating Gaussians which are not supported 
by the observations. Based on their experiments, 
authors propose Gabor filters as basic features, 
optimized by a simulated annealing process.

4.4 Quality Assessment

Zuo and Schmid (2013) propose three methods 
to improve the performance of a biometric rec-
ognition system, according to quality indexes: 
1) quality-of-sample; 2) confidence in matching 
scores; and 3) quality sample and template fea-
tures. The first two methods adaptively filter the 
probe biometric data and matching scores based 
on predicted values of Quality of Sample index 
(defined here as d-prime) and Confidence in 
matching Scores, respectively. The last method, 
considers that image quality measures as features 
for discriminating between genuine and imposter 
matching scores. The proposed algorithm has the 
advantage of being generic (suitable for other 
biometric modalities).

4.5 Iris Recognition

Ross et al. (2012), addressed the problem of rec-
ognizing degraded iris images, having authors 
considered five factors: 1) non-uniform illumina-

tion, 2) motion, 3) defocus blur, 4) off-axis gaze, 
and 5) nonlinear deformations. The key insight the 
proposed method is that a single-feature encod-
ing schema doesn’t appropriately handle all these 
variations, and propose three feature extraction 
/ matching strategies: 1) gradient orientation 
histograms, 2) scale invariant feature transforms 
and a 3) probabilistic deformation model. The in-
formation extracted by each descriptor is matched 
independently and results are combined at the score 
level, using the classical sum-rule. Experiments on 
the FOCS and FRGC data sets encourage further 
work on this kind of hybrid techniques.

As with other biometric traits, most difficul-
ties in iris recognition result from less controlled 
acquisition setups, that lead to severely degraded 
images. In this context, an interesting possibil-
ity might be to fuse periocular recognition to 
iris recognition algorithms that work on visible 
wavelength data. It has been claimed that acquire 
discriminating data from the iris at visible wave-
lengths might be to hard, due to the pigments of 
the human iris (brown-black Eumelanin (over 
90%) and yellow-reddish Pheomelanin (Meredith 
& Sarna (2012) that have most of their radiative 
fluorescence under visible light, but this sig-
nificantly varies with respect to the levels of iris 
pigmentation. Even though previous technology 
evaluation initiatives (Proença & Alexandre, 2010, 
2012) confirmed the possibility of recognizing 
human beings in visible wavelength real-world 
data, the state-of-the-art algorithms have only a 
moderately satisfactory performance (decidability 
indexes of 2.5 at most). The approach that cur-
rently outperforms was developed by Tan, Zhang, 
Sun, and Zhang (2012) and makes fuses global 
color-based features and local ordinal measures 
to extract discriminating data from the iris region. 
Wang, Zhang, Li, Dong, Zhou, and Yin (2012) used 
an adaptive boosting algorithm to build a strong 
iris classifier from a set of bi-dimensional Gabor-
based features, each corresponding to a specific 
orientation and scale and operating locally. Given 
the fact that the pupillary boundary is especially 
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difficult to segment in visible wavelength data, 
the authors trained two distinct classifiers: one 
for irises deemed to be accurately segmented and 
another for cases in which the pupillary boundary 
is expected to be particularly hard to segment. 
Li, Liu, and Zhao (2012) used a novel weighted 
co-occurrence phase histogram to represent local 
textural features, which is claimed to model the 
distribution of both the phase angle of the image 
gradient and the spatial layout and overcomes 
the major weakness of the traditional histogram. 
A matching strategy based on the Bhattacharyya 
distance measures the goodness of match between 
irises. Marsico, Nappi, and Richio (2012) proposed 
the use of implicit equations to approximate both 
the pupillary and the limbic iris boundaries and 
to perform image normalization. They exploited 
local feature extraction techniques such as linear 
binary patterns and discriminating textons to 
extract information from vertical and horizontal 
bands of the normalized image.

4.6 Oculomotor-Based Recognition

One of the most original branches in the ocular 
biometrics domain, might be the recent attempts 
in performing recognition using as discriminating 
information the eye movements. In this scope, the 
work of Komogortsev, Karpov, Holland, and Pro-
enca (2012) should be highlighted. These authors 
propose to fuse at the score level the oculomotor 
plant characteristic and the iris texture. From the 
eye-movement perspective, their results point out 
that the proposed schemes provide discriminating 
information between individuals. From the iris 
perspective, the main conclusion is that very low 
error rates can be obtained, even when operating 
on data with resolution substantially lower that the 
ISO/IEC 19794-6 recommendation. An extremely 
interesting feature of their experiments was that 
they were performed using low-cost COTS Web-
cams. Another interesting work on this scope is due 
to Rigas, Economou, and Fotopoulos (2012), that 
used cues that reflect the individual idiosyncrasies 

of eye movements for augmenting the robustness 
of the resulting pattern recognition system. Their 
method is based on multivariate Wald-Wolfowitz 
test, that compares the distributions of saccadic 
velocity and acceleration features. The observed 
identification rates reveal the efficiency of the 
method, even though error rates are still far of the 
obtained with the classical biometric traits (e.g., 
iris and face). To narrow this gap in effectiveness 
with respect to other traits, authors plan to use more 
dynamic features, as the combination of time and 
spatial information provided by eye movements.

A competition on eye-movements biometric 
strategies was recently conducted by Kasprowski 
(2012). According to the observed results, the 
organizers concluded that is particularly impor-
tant to be very careful in terms of the position of 
eyes during data capturing and also to camera 
calibration. Even though, further work in this 
scope is encouraged, having authors compared the 
observed recognition effectiveness to the results 
attained by the earliest face recognition algorithms.

5. RESULTS AND DISCUSSION

Table 3 summarizes the results obtained by the 
most relevant periocular recognition methods. We 
give the types of features extracted and the classi-
fication scheme used by each algorithm. Also, the 
data sets used in the experiments are summarized, 
together with the observed accuracy. As we can 
see, recently developed methods focus mainly 
on texture analysis and key-point extraction, and 
even simple algorithms lead to fair performance 
levels, with a noteworthy response of LBP based 
methods. Periocular fitness for more relaxed setups 
is also corroborated by these results, favoring the 
visible wavelength over NIR.

However, and facing the heterogeneity between 
test data, it’s yet difficult to assess methods’ 
relative performance in-between themselves. 
To bring some enlightenment on that subject, 
methods should be tested on the same data and 
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results analyzed side by side. Implementations of 
each method should reproduce papers’ algorithm 
description as close as possible, and eventually 
omitted parameter chosen to maximize overall 
performance. As most of the literature reports 
results against the FRGC, that dataset is a good 
candidate for the evaluation stage. A total of 6225 
images were selected, with the right-side peri-

ocular region manually cropped to avoid further 
errors, resulting in over 250 thousand matching 
trials with a 1:2 intra- inter-class ratio. Results 
from those trials can be seen at Table 4.

Some papers reported multiple results from 
different setups. As so, values from Table 4 may 
differ from the ones on Table 3, since we now chose 
to display the ones best fitting our test conditions.

Table 3. Overview of periocular recognition methods 

Approach Features Extract Classifier Dataset Reported accuracy

(Park et al., 2009) Shape, Texture, 
Key-Points

HOG, 
LBP, 
SIFT

Euclidean 
distance, SIFT 
matcher

899 images, 
30 subjects, 
2 sessions, 
visible wavel.

HOG: 62.5% 
LBP: 70.0% 
SIFT: 74.2% 
Best: 80.8%

(Miller et al., 2010b) Texture ULBP Manhattan 
distance

FRGC, 
FERET

FRGC: 89.8% 
FERET: 85.1%

(Adams et al., 2010) Texture LBP+GEFE Manhattan 
Distance

FRGC, 
FERET

FRFC: 92.2% 
FERET: 85.1%

(Woodard, Pundlik, Lyle, 
& Miller, 2010a)

Color, 
Texture

R&G ch. 
color hist., 
LBP

Bhattacharya 
distance, 
Manhattan 
distance

FRGC, 
MBGC

L FRGC: 90% 
R FRGC: 88% 
L MBGC: 81% 
R MBGC: 87%

(Woodard, Pundlik, Miller, 
Jillela, & Ross, 2010b)

Texture Daugman’s 
iriscode, 
LBP

Hamming 
distance, 
Manhattan 
distance

MBGC L Iris: 13.8% 
R Peri: 92.5% 
L Fusion: 96.5% 
R Iris: 10.1% 
R Peri: 88.7% 
R Fusion: 92.4%

(Juefei-Xu et al., 2010) Texture, 
Key-Points

Walsh Masks, 
Laws’ masks, 
DCT, DWT, Force 
Fields, Gabor 
filters, LBP, SIFT, 
SURF

Cosine distance, 
Euclidean 
distance, 
Manhattan 
distance

FRGC DWT+LBP: 53.2% 
DCT+LBP: 53.1% 
Walsh+LBP: 52.9% 
Laws’ + LBP: 51.3% 
…

(Juefei-Xu et al., 2011) Texture WLBP+UDP Cosine distance FG-NET 100%

(Bharadwaj et al., 2010) Naturalnes, 
Openness, 
Roughness, 
Expansion, 
Ruggedness, 
Texture

GIST, ULBP Χ2 distance UBIRIS.v2 GIST: 70.82% 
ULBP: 63.77% 
Fusion: 73.65%

(Hollingsworth et al., 
2010)

Human Human Human NIR images, 120 
subjects

92%

(Hollingsworth et al., 
2012)

Human Human Human NIR & visible, 
210 subjects

NIR Peri: 78.8% 
V Peri: 88.4% 
NIR Iris: 85.6% 
V Iris: 79.3%
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Having Park et al. (2009) pioneering approach 
as comparison term, we can see how the sub-
sequent developed algorithms introduce in fact 
some improvements, either by using more robust 
procedures (e.g. ULBP vs. LBP), by proposing 
different image pre-processing and ROI definition 
Woodard, Pundlik, Lyle, and Miller’s (2010a) 
LBP vs. Park et al. (2009) LBP, or by bringing 
in new techniques (e.g. GIST). However, method 
performances are quite similar, with rank-1 ac-
curacy around 89%.

The major discrepancy between reported 
results and ours occur when color information is 
used (Woodard, Pundlik, Lyle, & Miller, 2010a). 
Although images from the same database were 
used for testing, we weren’t able to reproduce such 
scores, and even if obtaining better accuracy on 
ULBP, fusing it with the color descriptors didn’t 
bring any improvements. That happens because the 
score level fusion optimization technique (logistic 
regression) didn’t give color information enough 
weight to make itself representative. Nonetheless, 
if we attend at the correlation coefficients between 
features, the more contrasting one is color, fol-
lowed by iris and SIFT.

6. ISSUES AND PROBLEMS

Being an emerging and relatively new biometric 
trait, several issues arise from the use of this type 
of data for recognition purposes. These were 
grouped into five topics, based on the criteria 
suggested by Park, Jillela, Ross, and Jain (2011).

The first one is related with the imaging stage, 
and determining the optimal spectrum for periocu-
lar biometrics. As former research usually prefers 
near-infrared data, expectations aim towards the 
visible wavelength, where unconstrained recogni-
tion is favored. However, wouldn’t the fusion from 
data acquired at different wavelengths, yielding 
multispectral data, result in relevant advantages?

The next concern is about the actual boundar-
ies of the periocular region, which are yet to be 
settled. Even though we observe the inclusion of 
some traces like the eyebrows, iris or sclera, to 
improve overall performance, researchers some-
times disagree on whether those elements should 
rather be masked or cropped to avoid biased results.

Moving on to the feature encoding stage, 
new questions arise: which features are the most 
representative when aiming at discriminating this 
region? Also, the heterogeneity of the components 

Table 4. Tested periocular recognition methods performance indicators: Area Under ROC Curve (AUC), 
Equal Error Rate (EER), Computed (CA) and Reported Accuracy (RA) and Original testing dataset 

Approach Features AUC EER CA RA Dataset

(Park et al., 2009) LBP 
HOG 
SIFT 
Fusion

0.84 
0.82 
0.83 
0.86

0.24 
0.25 
0.23 
0.21

88.92% 
88.92% 
88.66% 
89.69%

70.00% 
62.50% 
74.20% 
80.80%

899 images, 
30 subjects, 
2 sessions, 
visible wav.

(Miller et al., 2010b) ULBP 0.82 0.24 89.69% 89.80% FRGC

(Woodard, Pundlik, Lyle, & 
Miller, 2010a)

ULBP 
Color 
Fusion

0.83 
0.62 
0.83

0.22 
0.41 
0.23

89.69% 
35.57% 
89.69%

83.40% 
74.20% 
87.10%

FRGC

(Woodard, Pundlik, Miller, 
Jillela, & Ross, 2010b)

LBP 
Iriscode 
Fusion

0.82 
0.75 
0.83

0.24 
0.30 
0.23

90.21% 
69.07% 
88.66%

88.70% 
10.10% 
92.40%

MBGC

(Bharadwaj et al., 2010) ULBP 
GIST 
Fusion

0.76 
0.87 
0.88

0.30 
0.21 
0.19

88.40% 
89.18% 
87.37%

54.30% 
63.34% 
73.65%

UBIRIS.v2
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in the periocular region may suggest that more 
elaborate feature schemes are required to describe 
such different types of information.

After settling the features, a feature matching 
scheme should be determined. We must take into 
account the techniques most suitable to handle data 
variations inherent to the less controlled acquisi-
tion process, and how to optimally handle the 
variations in the traditional data variation factors.

At last, how would periocular biometrics 
benefit from the fusion with other features? Even 
considering that the use of multiple traits might be 
important to compensate for acquisition adversi-
ties, and iris being a fit candidate for score level 
fusion during periocular recognition, the way of 
maximize the outcome of this (or other) associa-
tion is yet to be clearly established.

Apart from the imaging, encoding, matching 
and fusion alternatives detailed on the previous 
sections, Bakshi, Sa, and Majhi (2013) addressed 
the boundary definition issue by actually studying 
its proportions impact on the recognition perfor-
mance and the trade-off with computational cost, 
and proposing an optimized ROI with minimal 
template size and maximal recognition accuracy.

7. CONCLUSION

This chapter addressed the use of information 
in the vicinity of the eye (periocular region) to 
perform biometric recognition. Particularly for 
uncontrolled data acquisition scenarios, the peri-
ocular region is regarded as an interesting trade-off 
between using the entire face or using exclusively 
the iris. Information inside the periocular area is 
considered to be highly different between individu-
als and relatively stable over lifetime.

According to the above properties, several 
research groups have been concentrating their 
efforts in developing algorithms for periocular 
recognition, that usually profit of the heteroge-
neous types of information in this region: shapes 
of eyelids, texture of the skin and iris, distribution 

of eyelashes and skin key points (e.g., spots). This 
heterogeneity propitiates the fusion at different 
levels (data, features or scores), from various types 
of recognition algorithms, which is known to po-
tentially increase robustness against degraded data.

Having presenting the publicly available data 
sets where experiments are being carried out, 
we also summarized the most relevant research 
on this topic and compared the state-of-the-art 
results in terms of recognition performance. Also, 
we discussed the issues and directions for further 
work on this topic.
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KEY TERMS AND DEFINITIONS

Commercial Off-the-Shelf (COTS): Usually 
refers to products that are commercially available 
and can be bought and used as they are, in a plug-
and-play setting.

Histograms of Oriented Gradients (HOG): 
Texture descriptor highly popular in computer 
vision, to efficiently describe a broad range of 
images. It consists in extracting the oriented gra-
dients in images patches, to quantize and group 
them into local histograms that are considered 
the feature sets.

IrisCode: Refers to the biometric signature 
extracted from the unoccluded iris ring, after seg-
mentation and normalization. The most popular 
approach consists in the convolution between a 
set of Gabor filters and the normalized data, from 
where the sign of coefficients is used.

Local Binary Patterns (LBP): Extremely 
efficient texture descriptor, that summarizes in a 
single value the relationship between each pixel 

and its surroundings, in terms of relative intensity. 
Usually, histograms of these values are built and 
considered the feature descriptors.

Oculomotor Recognition: Emerging trait for 
biometric recognition, based in the observation 
that the movement of each subject’s eyes is singular 
and relatively stable over lifetime.

Periocular Recognition: Emerging biometric 
trait that complements the iris texture, in degraded 
data acquisition environments. The idea is that, for 
bad quality data, additional discriminating infor-
mation can be obtained from the shape of eyelids, 
and eyelashes, eyebrows and the skin texture.

Region-of-Interest (ROI): It is the first phase 
of any periocular recognition algorithm. After 
detecting the ocular components, a rectangular is 
superimposed in the vicininity of the eye, from 
where the biometric signature is extracted.

Scale-Invariant Feature Transform (SIFT): 
It attempts to find particular regions (keypoints) 
in the image that are singular, in terms of their 
statistical properties. It also refers to a matching 
strategy that tries to find correspondences among 
keypoints in different images.

ENDNOTES

1 	 http://iris.di.ubi.pt/ NOISYRIS
2 	 FaceVACS SDK available at http://www.

cognitec-systems.de
3 	 Free virtual makeover tool, available at http://

www.taaz.com
4 	 http://nxt.ncat.edu/


