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Abstract—The fully automated surveillance of human be-
ings remains an open problem, particularly for in-the-wild
scenarios, i.e., for complex backgrounds and under uncon-
trolled lighting conditions. Background Subtraction (BGS) is
typically the first phase of the processing chain of such type
of systems and holds the feasibility of all the subsequent
phases. Hence, it is particularly important to perceive the
relative effectiveness of BGS, with respect to the kind of
environment. This paper gives an objective evaluation of the
state-of-the-art BGS algorithms on unconstrained outdoor
environments. When compared to similar published works,
the major novelties are two-fold: 1) the focus is put on scenes
populated by human beings; and 2) an objective measure
of the wildness of environments is proposed, that strongly
correlates to BGS performance, and enables to perceive
the algorithms’ robustness with respect to the environment
complexity. As main conclusions, we observed that the SOBS
algorithm outperforms the remaining methods. Nevertheless,
its performance leads to conclude that BGS in unconstrained
environments is still an open problem.

I. INTRODUCTION

Several attempts have been made toward the develop-
ment of fully automated surveillance systems for action
recognition / human identification purposes, but up to the
moment no algorithm is robust enough to work in wild
scenarios, i.e., under uncontrolled lighting conditions of
outdoor environments.

Background Subtraction (BGS) is in the basis of the
processing chain and provides support for all subsequent
phases. Hence, the main goal of this paper is to evaluate the
performance of the state-of-the-art BGS algorithms, with
emphasis put on outdoor environments populated by human
beings.

Even though previous evaluations of BGS techniques
exist in literature, they have focused their interest in the
post-processing performance [1], or in the general perfor-
mance of BGS algorithms, regardless the type of object
and the environment conditions [2]. The evaluation of BGS
robustness to different kinds of degradation factors was
addressed in the ChangeDetection Dataset [3], however
surveillance scenarios were not given special attention and
the methods were not exhaustively evaluated, i.e., only
one parameter configuration was used, which may yield
misleading results. The evaluation of BGS performance in
surveillance videos was addressed in [4], but an artificial
dataset was used which does not entirely capture the natural
degradation factors, such as static shadows and reflections,
Figure 1c) and 1d), respectively.

When compared to previously published works, this
paper offers several discriminating features: 1) analysis of
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Fig. 1. Typical challenges of BGS in-the-wild.

BGS methods performance in wild scenarios populated by
human beings; 2) objective measurement of the environ-
ment hardness; and 3) analysis of performance variations
with respect to parameter configurations.

Figure 1 illustrates the major factors that determine
the hardness of outdoor environments and decrease the
average performance of BGS algorithms: a) dynamic light-
ing conditions mislead BGS methods by modifying the
background/foreground distributions; b) heterogeneous size
of subjects yield small foreground regions, prone to be
erased by the post-processing step of BGS methods; c)
the static shadows, cast by background objects, disturb the
subjects appearance, whereas dynamic shadows, cast by
foreground regions, disturb the appearance of the back-
ground ; d) reflections of the foreground objects are hardly
ever identified as background; e) complex backgrounds
require the methods ability to cope with periodic changes
in the background.

In order to compare the performance of the different
algorithms in a fair way, it is particularly important to
perceive the effect of each of their parameters and to
estimate the optimal configuration of each algorithm in the
type of data used in our evaluation. Hence, we summarize
each parameter used by the algorithms tested and report
the levels of performance with respect to variations in each
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one.

Additionally, we also compare the relative performance
of each BGS algorithm with respect to the hardness of
environments, i.e., how their performance degrades as
the data quality decreases, concluding not only about
algorithms effectiveness but also about their robustness.
Finally, we measure the individual impact of typical image
degradation factors in the performance of BGS algorithms.

The rest of this paper is organised as follows: Section
II provides a summary description of the BGS methods.
Section III describes the proposed metric to quantify en-
vironment hardness and the experimental protocol used in
our experiments. Section III also discusses the performance
attained by the BGS methods in distinct environment con-
ditions and in specific image degradation factors. Finally,
conclusions are drawn in Section IV.

II. BACKGROUND SUBTRACTION: STATE-OF-THE-ART

Despite most BGS methods rely on a background
model, the strategy used to construct this model is the pri-
mary distinctive feature between them. Statistical analysis
of the last N frames was one of the first strategies devised
to model the background [5], [6], [7].

Gaussian-based methods assume that background
chrominance is normally distributed. A single Gaussian [8]
or a mixture of Gaussians [9] are used to encode the typical
values of background.

In contrast to Gaussian-based methods, which assume
pixel independence, the Eigenbackground method [10]
takes advantage from the pixel correlations by building an
eigenspace from a set of N background frames. However,
it is not suitable to bootstrapping video sequences, since
background frames are hardly ever found.

Alternatively, the Self-Organizing Background Subtrac-
tion (SOBS) algorithm [11] also uses neighbour correlation
and its adaptive nature allows robustness to bootstrapping.
The most likely HSV values of a background pixel are
modelled by the weight vectors of a Self Organizing Map.
Afterwards, the Spatially Coherent SOBS (SC-SOBS) [12]
was proposed to generate spatially coherent foreground
regions providing additional robustness against false detec-
tions.

The ViBe algorithm [13] distinguishes itself in the back-
ground modelling. Rather than infer a model for the typical
values of each pixel, it samples the values of neighbour
pixels.

III. EXPERIMENTS AND RESULTS

A. Environment Wildness

Regarding human detection, the environment hardness
is mainly dependent on the following factors: the number
of subjects in the scene, the contrast between foreground
and background, the lighting conditions, the static shadows
of the background and the complex background.

In order to measure the hardness of an environment,
we propose combining these factors in a single objective
metric, hereinafter designed as wildness. Considering that
the performance of human detection is directly related
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Fig. 2. Relation between the BGS performance and the wildness of
different videos. Each point corresponds to the video wildness and the
SOBS f-measure (BGS F-Measure). Illustrative frames of some videos
emphasize the correlation between scenario conditions and the wildness
measure.

to environment wildness, we define the wildness of an
environment as the miss rate of a person detector:

w =
FN

TP + FN
, (1)

where FN and TP denote the number of false negatives
and true positives yielded by the person detector.

In our experiments, we combined two detectors to
achieve human detection: 1) the Viola-Jones detector [14],
trained with human upper parts; 2) the HOG-based person
detector [15]. The detectors were combined in the decision
level and tested in a different set of videos (refer to section
III-B for the dataset used).

Figure 2 illustrates how diverse scenarios are classi-
fied according to their wildness. Environments exempt of
shadows, containing high contrast foreground regions and
with few subjects are assigned with low wildness values.
Contrarily, environments subjected to image degradation
factors are classified as wild.

To provide additional support to the proposed metric we
evaluated the correlation between BGS performance and the
environment wildness (refer to section III-C for the detailed
results).

B. Datasets and Covariates

In our comparative study, we collected a set videos
captured in-the-wild, along with a set of videos commonly
used in BGS evaluation [16], [11]. The description of both
datasets used in our experiments is presented in Table I.

The wildness metric was used to separate the test videos
in two datasets: unconstrained scenarios (w > 0.5) and
controlled scenarios (w ≤ 0.5). In this way, the videos
were divided objectively rather than based on the dataset
characteristics or visual observation.

Considering that the performance of each method is
greatly dependent on parameter configuration, we per-
formed an exhaustive search through the parameter space
to find the optimal configuration of each method. Each



2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)

SUVUBI Perception [16]
Frame Rate 15 20
Resolution 512x288 320x256
Number of Frames 750 500-1200
Number of Videos 15 9
Conditions Outdoor Outdoor/Indoor
Dynamic Lighting X
Complex Background X X
Shadow Interference X
Low Contrast
Foreground/Background X

TABLE I. DETAILS OF THE DATASET CAPTURED FOR TESTING BS
IN WILD ENVIRONMENTS.

Fig. 3. Example of the region of interest delimited for assessing the
impact of a single image degradation factor.

BGS method was optimized independently in the different
datasets, so that a correct performance comparison could
be carried out.

Table II lists the complete set of parameters studied.
The majority of the methods depend on a threshold (t) to
separate background and foreground distributions. Median-
based methods depend on a sampling rate (s) and a set
of training frames tf . Gaussian-based methods rely on a
learning rate α and in ng Gaussian distributions. ViBe uses
a radius R a minimum number of background elements
# and an update rate φ. The Eigenbackground uses n
initial frames and m eigenvalues to model the background,
whereas SOBS and SC-SOBS use different thresholds e and
different learning rates c in the training phase and in online
phase.

Apart from the BGS evaluation in distinct scenarios, we
have also gauged the impact of image degradation factors in
the performance of the BGS. In order to analyse each factor
independently, we delimited a region of interest, containing
only a specific factor. Figure 3 illustrates the region of
interest gathered for the complex background factor. The
performance of each algorithm in the region of interest is
determined by the false positive rate: FPR = FP

FP+TN ,
where FP and TN denote the number of false positives
and true negatives.

C. Performance Comparisons

Figure 4 presents the results obtained by the exhaustive
search of the parameter space of each BGS method. Each
point corresponds to precision and recall of a specific
configuration. Different colours are used to illustrate the
individual impact of a parameter when the remaining are
fixed.

Figure 5 summarises the best performance attained by
the described methods. The blue curves represent constant

Algorithms Parameters
Frame Difference [5] p = (t)
Adaptive Median [6] p = (t, s, tf )
Temporal Median [7] p = (t, s, bf )
EigenBackground [10] p = (t, n,m)

Single Gaussian [8] p = (t, α, tf )
MoG [9], [17] p = (t, α, ng)

SOBS [11], [12] p = (e1, e2, c1, c2)
ViBe [13] p = (R,#, φ)

TABLE II. THE BGS ALGORITHMS EVALUATED IN THIS STUDY
AND THE CORRESPONDING PARAMETERS.

f-measure values and improve the visual perception of the
overall performance of each method comparatively to the
others.

Table III presents the performance comparison
regarding different image degradation factors, as well
as the results attained in unconstrained and controlled
scenarios.

As expected, Frame Difference approach yielded the
worst performance in both controlled and unconstrained
scenarios. On the contrary, Adaptive Median proved to be
more robust than Single Gaussian method, which can be
explained by the adaptive nature of this approach, allowing
the modelling of the dynamic changes of wild scenarios.
The exhaustive search results corroborated this conclusion,
showing that lower sampling rates improved the algorithm
performance.

Temporal Median is based on the same principle of
Adaptive Median, but it was more robust to ghosts, dynamic
lighting conditions and complex background. Combining N
sub-sampled frames with previous background models was
the major reason for the Temporal Median achievements.
The new background model encoded more recent informa-
tion than the model of the Adaptive Median approach, and
thus was more to resilient to changes in the background.
The incomplete detection of the objects was the major
drawback of this strategy.

When compared to the remaining algorithms, the Eigen-
background attained very poor results not only in dynamic
lighting conditions, but also in unconstrained scenarios.
Modelling the background by the first N frames was the
primary cause for these results. The dynamic conditions of
in-the-wild environments could not be encoded only by the
initial frames, and thus adaptive approaches outperformed
this method.

Regarding the image degradation factors, the perfor-
mance of the Single Gaussian was considered reduced,
comparatively to the remaining approaches. The reasons for
these results were twofold: 1) complex backgrounds were
not unimodal; 2) dynamic lighting conditions required fast
adaptation.

Contrarily to Single Gaussian, the MoG approach as-
sumes a multimodal distribution for each pixel, and conse-
quently it attained good results in complex backgrounds
and ghosts. The poor performance attained in dynamic
light conditions was again justified by the reduced learn-
ing rate. With regard to the general performance of the
MoG method, the excessive sensitivity to non-periodic
background changes caused a plethora of false positives.
Besides, the results of the exhaustive search showed that
neither the threshold nor the learning rate could improve
significantly the precision of the method.
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Algorithms
Global performance (%) Image degradation factors performance (%)

Controlled Uncontrolled DL G CB SS DS
R P F R P F False Positive Rate (FPR)

Frame Difference [5] 65.1 37.4 47.5 49.6 38.6 43.4 5.6 1.9 46.8 85.5 30.8
Adaptive Median [6] 81.9 90.4 85.9 80.5 73.4 76.8 12.1 54.9 10.2 83.7 95.5
Temporal Median [7] 86.1 90.0 88.0 81.3 71.5 76.0 2.3 4.8 0.4 99.4 86.2
Eigenbackground [10] 83.5 81.3 82.4 78.6 64.3 70.8 23.8 3.7 1.5 63.8 94.0
Single Gaussian [8] 76.3 85.5 80.6 76.8 68.1 72.2 16.6 57.5 14.9 57.1 91.0
MoG [9] 85.1 84.9 85.0 83.5 73.7 78.3 24.5 0.0 0.4 39.0 99.9
Improved MoG [17] 70.6 90.1 79.2 80.6 72.6 76.4 15.5 0.8 18.0 43.0 97.5
SOBS [11] 86.7 96.7 91.4 82.0 80.6 81.3 9.1 0.8 0.2 67.1 92.1
SC-SOBS [12] 85.1 96.9 90.6 80.9 80.8 80.9 7.2 0.9 0.1 83.4 89.7
VIBE [13] 80.9 93.5 0.867 69.6 82.0 0.753 7.38 0.84 0.6 92.5 86.1

TABLE III. SUMMARY OF THE PRECISION (P), RECALL (R) AND F-MEASURE (F) ATTAINED FOR EACH BGS ALGORITHM IN DIFFERENT
ENVIRONMENTS. THE FALSE POSITIVE RATE (FPR) IS ALSO PRESENTED FOR THE FOLLOWING IMAGE DEGRADATION FACTORS: DYNAMIC

LIGHTING (DL), GHOSTS (G), COMPLEX BACKGROUND (CB), STATIC SHADOW (SS) AND DYNAMIC SHADOW (DS).
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Fig. 4. Precision (y-axis) and recall (x-axis) obtained for each BGS method using different parameter configurations. Each green point denotes the
performance achieved using a specific configuration, whereas each line represents the variation of a single parameter (p = ∗).

ViBe distinguished itself by its precision, which is
mainly justified by the use of neighbour information in the
background model, ensuring spatial consistency. However,
this strategy also provides incorrect classification of object
boundaries, which increases the false negative number.

Among the analysed methods, SOBS attained the best
results. This approach was able to achieve good results in
all the image degradation factors, maintaining an interesting
overall performance. The use of a Self Organizing Map
per pixel provided robustness to complex backgrounds,
since the typical values of the multiple backgrounds were
encoded in the different weight vectors. Besides, the rela-
tion between neighbour neurons boosted the adaptation to
lighting changes.

Comparing to SOBS, the spatial coherence introduced
by the SC-SOBS reduced the number of false detections.
However, this improvement yielded a lower recall rate, and
thus its general performance was worse than SOBS in wild
scenarios.

With regard to the comparison between dynamic and
controlled scenarios, we have determined the average per-
formance of each method in the two environments. Figure 6
presents the average precision and recall of each method in
controlled scenarios. For comparison purposes, each point
was added a vector defined by:
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Fig. 5. The best three configurations obtained for each BGS method
using an exhaustive search of the parameter space. Blue lines denote the
set of points with constant f-measure (F).

v = (ru, pu)− (rc, pc), (2)

where Ru and Rc denote the average recall obtained in
unconstrained and controlled scenarios, respectively. Pu and
Pc denote the average precision obtained in unconstrained
and controlled scenarios, respectively.

The results obtained evidence that BGS methods suffer
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from performance degradation when addressing uncon-
strained scenarios. On average, each method degraded its f-
measure in 11%. Besides, it was observed that in the major-
ity of the methods the angle of v was approximately 102o,
implying that precision is more sensitive to environment
conditions than recall. This can be easily explained by the
impact of image degradation factors in BGS performance.
Although they affect the detection of actual foreground
regions, their effect on background regions is much more
significant, and consequently the number of false positives
increases more than the number of false negatives.

Additionally, we have also determined a relation be-
tween the BGS performance and the environment wildness.
For this purpose, we determined the correlation between the
SOBS performance and the wildness of an environment.
The Pearson correlation between the two variables was
determined to be −0.79, evidencing that BGS performance
and wildness are inversely proportional. Furthermore, a
quadratic relation was found between the f-measure of
SOBS (BSF ) and the wildness of a video (w):

BSF = −0.13w2 − 0.16w + 0.93. (3)

In short, the most important findings of our study are
the following:

• BGS methods suffer from performance degradation
in unconstrained scenarios when compared to con-
trolled environments;

• Median-based methods adapt quickly to sudden
changes in the scene, maintaining an acceptable
recall rate. These methods have a good trade-
off between the performance in image degradation
factors and their general performance in wild sce-
narios;

• Although MoG has attained good performance
in unconstrained scenarios, it is not adequate
for highly dynamic environments containing non-
periodic changes;

• ViBe has distinguished itself by its precision, how-
ever miss-detection of object parts represents its
major drawback;

• By maintaining a good performance in the different
image degradation factors and by attaining the best
general performance, SOBS is the best method to
address in-the-wild scenarios;

• In general, BGS methods are not robust to shadows.
No algorithm has stood out in the dynamic shad-
ows, whereas Gaussian-based methods attained the
best performance in static shadows, mainly due to
their high sensitivity to changes in the background;

• The best method (SOBS) attained a f-measure of
approximately 81%, thereby we can conclude that
BGS in-the-wild remains an open problem.

IV. CONCLUSIONS

In this paper, we presented a comparative analysis of the
performance of the state-of-the-art BGS methods in wild
scenarios. Additionally, we introduced an objective metric
to classify the hardness of an environment, avoiding the
subjective labelling of the test videos.
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Fig. 6. Comparison between the average performance of BGS methods in
distinct scenarios. Each point represents the average performance of a BGS
method in controlled scenarios, and each vector represents the performance
degradation in unconstrained scenarios. Blue lines denote the set of points
with constant f-measure (F).

The obtained results evidenced that BGS methods de-
grade their performance in wild scenarios. Besides, we
found that Median-based methods are adequate for highly
dynamic scenarios, mainly due to their adaptation capacity.
However, the miss-detection of some objects parts is the
primary drawback of these methods.

The overall performance of each method stood out
MoG, SC-SOBS and SOBS as the best ones to address
unconstrained scenarios. However, MoG degraded its per-
formance in environments with non-periodic changes and
SC-SOBS attained similar results to SOBS with lower recall
rates.

Although the obtained results can be considered satis-
factory, the performance of SOBS (f-measure ≈ 81%) led
us to conclude that BGS in unconstrained scenarios remains
an open problem.
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