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Abstract—The growth in practical applications for iris bio-
metrics has been accompanied by relevant developments in the
underlying algorithms and techniques. Along with the research
focused on near-infrared (NIR) cooperatively captured images,
efforts are being made to minimize the trade-off between the
quality of the captured data and the recognition accuracy on
less constrained environments, where images are obtained at
the visible wavelength, at increased distances, over simplified
protocols and adverse lightning. This paper addresses the effect
of the interpolation method, used in the iris normalization stage,
in the overall recognition error rates. This effect is stressed
for systems operating under less constrained image acquisition
setups and protocols, due to higher variations in the amounts of
captured data. Our experiments led us to conclude that the utility
of the image interpolating methods is directly corresponding to
the levels of noise that images contain.

I. INTRODUCTION

One of the most active research areas in biometry seeks to
minimize the constraints associated to the recognition process.
The use of the iris as main biometric trait is emerging as one
of the most recommended, due to the possibility of contactless
data acquisition and to its circular and planar shape that makes
easy the detection, segmentation and compensation for off-
angle capturing. This area - often called non-cooperative iris
recognition - receives growing attention from the research
community (e.g., [1]–[6], [21]).

Independently of the type of used images (NIR or visible
wavelength) and of the constraints associated to the acquisition
setup, the large majority of the iris recognition methods
perform the normalization of the segmented data into a di-
mensionless pseudo-polar coordinate system through a process
known as the ”Daugman rubber sheet” (e.g., [7]–[9]). This
transforms the segmented iris data into a rectangular block
of fixed size and compensates for varying image capturing
distances and pupils’ sizes. Due to the different amount of
data in the segmented ring and in the normalized block, the use
of some interpolation method is unavoidable and constitutes
the scope of the work described in this paper. However, the
role of the normalization stage is stressed for non-cooperative
iris recognition purposes, due to significantly higher variations
in the amounts of captured data dictated by the higher range
of image capturing distances, different perspectives and het-
erogeneous lighting conditions that determine the size of the
pupil.

In this paper we show how the interpolation method used
in the normalization process affects the overall performance

of the recognition system. We used our implementation of
the Daugman’s recognition method [7] and varied the type of
interpolation method used in the normalization process, having
observed the variations in the recognition error rates over two
well known visible wavelength iris image datasets [10], [11].

The remaining of this paper has the following structure:
Section II overviews the iris recognition process, namely the
less constrained iris acquisition setup and the Daugman’s
approach. Section III briefly overviews the used variants of
image interpolation methods, describes the used datasets and
discusses the obtained results. Finally, Section IV states the
conclusions.

II. IRIS RECOGNITION

The large majority of the published iris recognition methods
follow the statistical pattern recognition paradigm, and share
the structure given in figure 1 The process starts with the
segmentation of the iris ring in the close-up eye image.
Further, data is transformed into a double dimensionless
polar coordinate system, through the above referred Daug-
man’s Rubber Sheet process. Regarding the feature extraction
stage, existing approaches can be roughly divided into three
variants: phase-based [12], zero-crossing [13] and texture-
analysis methods [14]. Dauman [12] used multi-scale quadra-
ture wavelets to extract texture phase-based information and
obtain an iris signature with 2048 binary components. Boles
and Boashash [13] computed the zero-crossing representation
of a 1D wavelet at different resolutions of concentric circles.
Wildes [14] proposed the characterization of the iris texture
through a Laplacian pyramid with four different levels. Finally,
in the feature comparison stage, a numeric dissimilarity value
is produced, which determines the subjects’ identity. Here, it
is usual to apply different distance metrics (Hamming [12],

Fig. 1. Typical block diagram of the published iris recognition methods.



Euclidian [15] or weighted Euclidian [16]), or methods based
on signal correlation [14].

The accuracy of the deployed iris recognition systems is
remarkable, as reported by the study conduced by Daug-
man [17] and three other independent evaluations [18]–[20].
However, we stress that those error rates are conditioned to the
acquisition of good quality images, captured in stop-and-stare
interfaces, at close imaging distances. Also, failures on this
acquisition setup cause significant increment of the recognition
error rates.

A. Less Constrained Image Acquisition

In less constrained conditions, where a trade-off between
data acquisition constrains and recognition accuracy is in-
evitable, the challenge is to maximally increase flexibility
in three axes: subjects position and movements, imaging
distances and lightning conditions. As before stated, this area
receives growing interests from the research community and
constituted the scope of several publications. The “Iris-on-
the-move” project [2] is a major example of the engineering
image acquisition required to make the recognition process
less intrusive to subjects. Honeywell Technologies registered
a patent [3] of a similar system capable of performing at-a-
distance iris recognition. Previously, Fancourt et al. [4] showed
that it is possible to acquire images at-a-distance of up to 10
meters with sufficient quality to support iris recognition and
Narayanswamy and Silveira [5] increased the iris image depth-
of-field through a simple framework composed by a camera
with fixed focus, without a zoom lenses. Park and Kim [21]
proposed an approach to fast at-a-distance acquisition of iris
images and He et al. [6] studied the acquisition of in-focus
images, as well analyzed the impact of different wavelengths
in the recognition error rates. Although concluding that illu-
mination inside the 700-900 nm optimally reveals the richness
of the iris structure, they observed that irises with moderate
levels of pigmentation could be imaged in the visible light
with good quality.

B. Daugman’s Approach

The Daugman’s approach [7] to perform the iris biometric
recognition is known to be the most widely acknowledged,
with great acceptance over the scientific community. Apart
from being the uniquely implemented in commercially de-
ployed systems, it is the one that usually acts as comparison
term for alternative proposals.

The structure of this method is as follows: it starts by the
detection and segmentation of the iris, through the determi-
nation of its circular contours. Later, the normalization of the
segmented region is made as described in subsection II-C. The
next stage is iris feature extraction through the convolution
of the normalized data with a bank of 2D Gabor Wavelets
(1), followed by the quantization that gives a binary iriscode.
This code is used in the matching stage, using the Hamming

Distance (2) as comparison measure.
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The performance can be accessed by its decidability (3), that
reflects the distance between the two distributions obtained for
the comparisons between signatures extracted from the same
(intra-class) and different persons (inter-class).
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Where µinter and µintra denote the means of the inter- and
intra-class comparisons and σinter and σintra the respective
standard deviations.

C. Image Normalization

As mentioned before, the normalization process aims to
obtain invariance to size, position and pupil dilatation in
the segmented iris region. This is accomplished by assigning
each pixel to a pair of real coordinates (r, θ) over the polar
coordinates system, which will be used in the later stages.

For this purpose, we will proceed with Daugman’s rubber-
sheet model [22], as originally proposed. (4) and (5) give a
transformation similar to the depicted in figure 1.

I(x(r, θ), y(r, θ))→ I(r, θ) (4)

x(r, θ) = (1− r)xp(θ) + rxs(θ)
y(r, θ) = (1− r)yp(θ) + rys(θ)

(5)

Where r and θ denote respectively the radius and the angle,
x(r, θ) and y(r, θ) are defined as linear combinations of both
the set of pupillary boundary points (xp(θ), yp(θ)) and the set
of limbus boundary points along the outer perimeter of the iris
(xs(θ), ys(θ)) bordering the sclera.

III. EXPERIMENTS

The use of the Daugman’s recognition method should be
justified. Although this method has been thought to operate
over iris images acquired at NIR wavelengths, it has proven
to perform well in different types of images, specially if the iris
was accurately segmented and occlusions of the iris textures
are detected and localized in the original and normalized data.
The necessary parameters for the Gabor wavelets (1) were
tuned for best performance on all different trials, being chosen
those with maximal decidability (3). Regarding iris’ location
and segmentation, all images were manually and accurately
segmented, being known the center and radius of the pupils
and of the iris and detected the regions that occlude portions
of the iris. Thus, we assume that segmentation inaccuracies
and noisy regions do not corrupt the obtained results.



A. Image Interpolation Methods

On the translation between the cartesian and the pseudo-
polar coordinate system we used three interpolation vari-
ants. The first - hereinafter called no interpolation - simply
picks from the cartesian data the nearest neighbor pixel of
(x(r, θ), y(r, θ)) (using L2 norm). Also, we implemented two
of the most well known interpolation variants: the bilinear and
bicubic [23], which obtain the corresponding value according
to its neighborhood, as below described. Other types of
interpolation (as the bicubic splines) were not the focus of
our analyzis, essentially because we believe that the obtained
results will be close to those obtained.

1) Bilinear Interpolation: This is the simplest method to
perform the two-dimensional approximation of missing values.

y(x1, x2) = (1− t)(1−u)y0 + t(1−u)y1 + tuy2 +(1− t)uy3
(6)

To determine the value yij = y(x1i, x2j) at some point, (6)
is used, considering four surrounding points yo, ..., y3, defined
counterclockwise starting from the lower left that obey the
relations stated in (7) with i and j according to (8) and t, u
as described in (9).

y0 ≡ yij y1 ≡ y(i+1)j

y2 ≡ y(i+1)(j+1) y3 ≡ yi(j+1)

(7)

x1i ≤ x1 ≤ x1(i+1) x2j ≤ x2 ≤ x2(j+1) (8)

t ≡ (x1 − x1i)/(x1(i+1) − x1i)
u ≡ (x2 − x2j)/(x2(j+1) − x2j)

(9)

2) Bicubic Interpolation: This interpolation method gives
an higher order of smoothness, at a cost of use a higher number
of pixels in each operation. Interpolation for the function y,
given the four derivatives y1, y2, y12, is executed in two steps:
determination of quantities cij , i, j = 0, ..., 3 combining a
region of the image with the appropriate matrix, and then the
following equations (10) with t, u given by (9).
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B. Datasets

In the experiments, two different datasets were used: Ubiris
and Ubiris.v2. The higher range of image acquisition distances
enables the capturing of irises with higher varying sizes and
will make the results more visible. Also, our research concerns
the feasibility of recognition in visible wavelength iris images,
captured at-a-distance and on-the-move.

The Ubiris database [10] was created at the Soft Computing
and Image Analysis Lab (SOCIA Lab) of the University of
Beira Interior. It consists on a set of visible wavelength
noisy iris images, captured at close-up distance with user
cooperation. This dataset is intended for the development of
robust iris recognition algorithms for biometric purposes and
aims to simulate non-cooperative image acquisition, adding
noise to the resultant images.

The Ubiris.v2 [11], also created at SOCIA Lab, contains im-
ages actually captured at-a-distance (between 4 and 8 meters)
from moving subjects. Those images contain several regions
of the iris rings occluded by reflections, as well significant iris
obstructions due to eyelids and eyelashes.

Over 500 pictures (400× 300 pixels) were used from each
dataset on our experiments. In both cases, we selected a group
of images that we believe to represent each dataset.

C. Results and Discussion

1) Cartesian Data Usage: Our first observation is that
the interpolating methods used in the normalization process
do impact over iris pixels usage. To illustrate this, figure 2
shows the number of times each pixel located within the
ring of a segmented iris region is used in the translation
into the normalized data. Here, brighter pixels denote those
more frequently accessed. The higher smoothness of the image
corresponding to the bicubic interpolation is evident, as well
evident discontinuities in the pixels’ usage can be observed in
the left image, obtained when used the no interpolation variant.

Not surprisingly, we observed that the average probability of
a pixel to be used in the normalization process remains stable
(due to the fixed size of the normalized block). However, the
standard deviation obtained for the corresponding distribution
becomes significantly lower when interpolation methods are
used. In other words, pixel selection during a normalization
process became more balanced, directly corresponding to the
complexity of the interpolation process, i.e., to the number of
pixels involved in a single interpolating operation.

Figures 3 and 4 give histograms about the probability for
the pixels usage in the normalization stages, respectively in the
Ubiris and Ubiris.v2 data sets. The horizontal axis gives the
probability beans and the vertical gives the number of pixels
that fall in the corresponding bean.

Regarding the Ubiris dataset (highly normalized), it can be
observed a considerable reduction in the amount of pixels that
were never accessed during the normalization procedure (#pix-

Fig. 2. Representation of the number of times that each pixel of the
segmented iris data is accessed during a normalization process, when using no
interpolation (left), the bilinear (middle) and the bicubic (right) interpolation.



Fig. 3. Overall probability for the iris pixel usage respectively with no
interpolation (top), bilinear (middle) and bicubic interpolation (bottom) in the
Ubiris dataset.

els within the 0 probability bean), as well as an accentuation
of the slope of the #Pixels value regarding the augment of the
probability values.

The spread of the bar beans also suffers an decrement, from
the no-interpolation to the bilinear and from this one to the
bicubic variant. Using the bilinear interpolation, the probability
for the pixel selection converged to a more evenly distributed
iris data usage, where pixels are more likely to became part of
the data used to extract the iriscode. Finally, when analyzing
the bicubic interpolation, these changes are even more visible.
The amplitude of the overall distribution was smaller and
more homogeneous, as well as the resemblance between the
probability for the pixel selection and a normal distribution.

Interestingly, the values obtained for the Ubiris.v2 database
were more close to each other, which we explain by the
higher irregularity of this data set. However, the above stated
observations for the first version of the database fit to the
results obtained for this second version, as can be seen
essentially by the higher spread of the histogram’s beans when
no interpolation method was used.

2) Recognition Error Rates: Here, we give results about
the variations of the recognition error rates, as function of
the type of interpolating method used in the normalization
process. We plot the receiver operating curves (ROC) obtained
when using each of the three interpolating variants on the two
experimented datasets. The first interesting observation is that
the lowest error rates in the Ubiris data set were - clearly -
obtained when no interpolation method was used (figure 5).
Our interpretation is that less cartesian iris pixels are used
in the normalized data, which minimizes the aliasing effects

Fig. 4. Overall probability for the iris pixel usage respectively with no
interpolation (top), bilinear (middle) and bicubic interpolation (bottom) in the
Ubiris.v2 dataset.

induced by the normalization process. Thus, in environments
that propitiate the acquisition of less noisy images, the use of
interpolating methods represents no-advantage, as showed by
the difference between the results obtained when using no-
interpolation and the interpolating methods.

Oppositely, for the Ubiris.v2 images the better results were
obtained when using the two types of interpolating techniques
(figure 6). As this dataset contains higher levels of noise,
the normalization process tend to be best succeed if more
iris pixels are used in each normalization step, smoothing
the corruption that non-detected noisy data carries to the
normalized image.

Finally, the previously described usage of the iris pixels of
the cartesian coordinate system as function of the interpolation
method is resumed in Table I, with corresponding confidence

Fig. 5. ROC curve for different interpolation methods on Ubiris dataset.



Fig. 6. ROC curve for different interpolation methods on Ubiris.v2 dataset.

intervals of 95%. Also, it is given the decidability (3) of
the corresponding pattern recognition systems. That - again
- confirms the previously stated conclusions: the use of image
interpolation techniques on less noisy images seems not to
represent any surplus in the final error rates. However, if
images are highly noisy, interpolation techniques can slightly
increase the recognition accuracy.

Interpolation Iris Usage Decidability

U
bi

ri
s None 0.926± 1.663× 10−4 4.390

Bilinear 0.999± 2.294× 10−6 2.724
Bicubic 0.999± 6.362× 10−7 2.779

U
bi

ri
s.

v2 None 0.967± 1.957× 10−4 0.410
Bilinear 0.986± 1.286× 10−4 0.519
Bicubic 0.988± 1.209× 10−4 0.496

TABLE I
IRIS PIXEL USAGE AND DECIDABILITY ON DIFFERENT INTERPOLATION

METHODS FOR UBIRIS AND UBIRIS.V2 DATASET.

IV. CONCLUSIONS

Although usually not mentioned, the interpolation technique
used in the translation of the segmented iris data between
coordinate systems can impact the final error rates of the
recognition system. In this paper we used the Daugman’s
recognition method and two data sets with different levels of
noise to evaluate the variations in the recognition error rates, as
function of three image interpolating variants: nearest neighbor
(no-interpolation), bilinear and bicubic.

We concluded that the use of interpolation techniques does
not constitute any significant advantage in iris images with low
levels of noise and tend to contribute to a slightly decrease
in the recognition error rates of highly noisy iris images.
Thus, further research is required to access the utility of these
interpolating techniques in the increase of the recognition
robustness, on non-cooperative iris recognition environments,
where the ability to deal with highly noisy and heterogeneous
iris data is required.
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