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Abstract The state-of-the-art gait recognition algorithms

require a gait cycle estimation before the feature extraction

and are classified as periodic algorithms. Their effective-

ness substantially decreases due to errors in detecting gait

cycles, which are likely to occur in data acquired in non-

controlled conditions. Hence, the main contributions of this

paper are: (1) propose an aperiodic gait recognition strat-

egy, where features are extracted without the concept of

gait cycle, in case of multi-view scenario; (2) propose the

fusion of the different feature subspaces of aperiodic fea-

ture representations at score level in cross-view scenarios.

The experiments were performed with widely known

CASIA Gait database B, which enabled us to draw the

following major conclusions, (1) for multi-view scenarios,

features extracted from gait sequences of varying length

have as much discriminating power as traditional periodic

features; (2) for cross-view scenarios, we observed an av-

erage improvement of 22 % over the error rates of state-of-

the-art algorithms, due to the proposed fusion scheme.

Keywords Gait representation � Multi-view gait � Cross-

view gait � Aperiodic gait recognition � Gait cycle

estimation � Unconstrained biometrics

1 Introduction

There is an increasing interest in the human gait to be

employed in biometrics applications. It is more suitable

to be used in less controlled scenarios [19], character-

ized by the reduced quality of data. Gait recognition is

an activity-based biometric trait [10], and represents the

subjects in the way they walk. Even if the discriminating

capability across humans gaits is smaller than that of

classical biometric traits (e.g., the iris, or the face), there

are several reasons for using the gait as a biometric trait

that can be pointed out here: (1) no minutia information

is used in the recognition process, leading easier to ac-

quire the data from long distances; (2) walking is an

instinctive activity of humans, reducing the possibility to

imitations or deliberate changes over a large period; and

(3) unlike the face and iris, a gait information is easily

captured from multiple view angles, hence, reduces the

possibility of having significant occlusions in a gait

sequence.

A view-dependent gait recognition, where gallery and

probe samples are of same view angle, makes subject

registration process complex and infeasible. On one side, it

restricts the probe subject to walk in a particular direction,

in which gallery data were acquired and other side, it re-

quires to have gallery data acquired in all possible view

angles. It also suffers from being sensitive to the difference

between angles of probe and gallery data. To overcome

these problems, the gait recognition research has ap-

proached towards the direction of view-independent

recognition methods, which are more suitable for uncon-

strained biometrics. Further, view-independent methods

can be applied in two different scenarios, namely, multi-

view and cross-view gait recognitions [15], which are de-

tailed in next Sect. 2.
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Conventionally, gait recognition algorithms employ the

feature representation obtained from each gait cycle of a

sequence and thus, it requires the step of gait period esti-

mation. Hence, this class of algorithms falls in the category

of periodic gait recognition. Due to high probability of

having errors in the estimation of the gait cycle from a gait

sequence, there would be a significant degradation in the

recognition performance. One more disadvantage in this

case is that a periodic feature representation technique

cannot be extended or generalized to other activities, which

are not periodic, e.g., jump, bend etc. In this context,

aperiodic gait recognition algorithms become more suit-

able in flexible and scalable biometric applications as they

do not require gait cycle estimation. In Fig. 1, system block

diagrams for periodic and aperiodic gait recognition tech-

niques are shown. The performance of an aperiodic gait

recognition algorithm do not depend on the gait period

estimation module, which is known to be a problematic,

particularly for the samples with low-quality, view angle

variations and occlusions.

So far in the existing literature work of a gait recogni-

tion, there have been no attempt of using a gait feature

image without extracting the gait period. Thus, we examine

and propose the aperiodic gait recognition scheme in dif-

ferent scenarios of view-insensitive gait recognition.

The main contributions in this paper are: (1) propose an

aperiodic gait recognition algorithm for both, multi-view

and cross-view scenarios; (2) perform experiments with

non-uniform lengths of gait sequences, enabling the ap-

plication of the proposed algorithm for unconstrained

scenarios; and (3) describe an approach based on the fusion

at the score level, particularly suitable for the cross-view

scenario. In the cross-view scenario, view angles of probe

and gallery gait sequences are different. Thus, it is most

challenging case in a view-invariant gait recognition and

recently been taken as a research objective for biometrics

and surveillance applications. Our experiments were

performed in the most widely used gait database (CASIA

Gait database B) and the performance of the proposed

algorithm was compared to state-of-the-art techniques. We

used gait sequences of random length, simulating the ac-

quisition of gait samples in unconstrained setups. When

compared to related algorithms, experimental results point

out a significant improvement in performance of the pro-

posed aperiodic feature extraction scheme in both, the

multi-view and cross-view scenarios. Also, the proposed

fusion approach with an aperiodic feature representation

proved to be particularly effective for cross-view situations

and outperforms state-of-the-art recognition rates.

The remaining part of this paper is organized as follows:

the review of gait recognition techniques for multi-view

and cross-view scenarios is presented in Sect. 2 along with

the list of research objectives. The proposed aperiodic gait

recognition algorithm is described in Sect. 3 and its de-

tailed justification is explained in same section. Section 4

details the fusion approach to be applied in cross-view

scenario. The experimental results are presented and dis-

cussed in Sect. 5. Finally, Sect. 6 concludes the paper

highlighting the accomplishment of the work.

2 Related work and research objectives

Gait sequence is a biometric signature, particularly suitable

for applications involving long-range data acquisition. In

the evolution of gait recognition methods, early research

was aimed at matching the probe and gallery gait se-

quences, both of same view angles. There are various gait

feature representations proposed in the literature for this

kind of a simple gait recognition. In subsequent years of

research, various gait representations were tested and

validated against covariates such as distance, environment,

illumination, back-pack and loose clothing. During the

recent phase of research, the problem of a gait recognition

Gait cycle

Estimation

Gait Feature

Image
Classifier Person ID

(a)

Gait Feature

Image

Feature Subspace

1

Feature Subspace

2

Feature Subspace

3

Fusion &

Classifier
Person ID

(b)

Fig. 1 Gait recognition

approaches: a periodic gait

recognition (conventional).

b Aperiodic gait recognition

(proposed)

Pattern Anal Applic

123



was extended to make the system view-invariant or view-

insensitive, where a system is expected to perform an

identification irrespective of the angle in which subject

walks. It is assumed that an angle of probe gait sequence is

close to one of the angles of the gallery samples. Recently,

the gait recognition problem has entered into the sub-re-

search of exploring the way to apply a gait recognition

between angles of probe and gallery with larger differ-

ences, i.e., cross-view gait recognition.

2.1 Related work

In the case of unconstrained scenarios, a gait signature is

acquired from far distance such that subjects are free to

walk in any direction. A probe gait sequence may be

captured in any view angle. This kind of flexibility for

probe subjects leads to two scenarios for gait recognition

algorithms: multi-view and cross-view. In the former, var-

ious view angles per subject are made available as a gallery

data with the assumption that an angle of probe nearly

matches one of the available gallery angles. Several rele-

vant algorithms of this kind are reported in the existing

literature. In its first kind, Kale et al. [11] have used a

canonical view as an intermediary view between probe and

gallery of any view angle, thus making a gait recognition

algorithm view-independent. Han et al. [8] also attempted

to apply the principle component analysis (PCA) and

multiple discriminant analysis (MDA)-based subspace on

the gait energy image (GEI) feature space to achieve a

view-insensitive gait recognition. Similar gait recognition

objectives achieved in works [3, 6, 9, 10, 17]. Liu

et al. [16] have extracted features from all views and then

extracted a linear subspace, called as multi-view subspace

representation (MSR) for representing a gait sequence ir-

respective of its view angle.

In the cross-view scenario, view angles of probe and

gallery gait sequences are different. Thus, it is most chal-

lenging problem in gait recognition and recently being

considered as the critical research objective for biometrics

and surveillance applications. The cross-view gait recog-

nition family is particularly important for unconstrained

setups, where it has to recognize subjects for the probe gait

sequence with view angle different from that are available

in gallery. In an existing literature, few attempts have been

reported to transform gait sequences from one view angle

to another, using view transformation models (VTM).

Makihara et al. [18] used singular value decomposition

(SVD) to transform the frequency spectrum of the gait

silhouette volume over a each gait cycle from one view

angle to another. More recently, techniques based on

truncated SVD (TSVD) [12], support vector regression

(SVR) [13], canonical correlation analysis (CCA) [1],

correlated motion regression [15] were proposed for cross-

view gait recognition. There is also an attempt recently by

Kusakunniran et al. [14] to extend SVM and sparse-based

regression work to a neural network-based VTM

construction.

In all the above-described methods, feature extraction is

done from the segment of each gait cycle, i.e., the concept

of cycle is used as a reference point. As stated earlier,

algorithms used for estimating a gait cycle decrease their

effectiveness for the data of low quality due to covariates

(e.g., strong variations in perspective, scale or occlusions),

which are more dominant in unconstrained setups. Two

classes of view transformation techniques are reported in

cross-view recognition methods: (1) transform the probe

into the view angle of gallery, assuming that elements in

the gallery share the same perspective; and (2) transform

gallery data into the view angle of probe. Works described

in [12–15] fall in the latter category when it is to be used

with a fusion of multiple views, which significantly aug-

ments the computational burden of the recognition process,

particularly in cases where large number of identities are

enrolled.

2.2 Research objectives

Keeping a pace with a current research in the field of the

view-invariant gait recognition, we listed out main objec-

tives of research work presented in this paper:

– To propose the aperiodic gait feature representation,

where human gait is assumed to be not periodic and

thus, gait cycle estimation is not required in processing

phase.

– To apply and validate the aperiodic gait recognition to

multi-view scenarios.

– Since, an aperiodic feature representation could be very

sensitive to the view transformation models to be used

in cross-view scenarios, the important objective of our

work is to develop the fusion scheme for an aperiodic

cross-view gait recognition.

– To show the results for aperiodic multi-view and cross-

view recognition with higher statistical significance.

This is achieved using repetitions of experiments,

where lengths of test sequences were drawn arbitrary

across the probe sequences.

3 Proposed aperiodic gait recognition model

Most popular feature extraction techniques for a gait

recognition are Gait Energy Image (GEI) [7], Radon

Transform Energy Image (REI) [4, 17] and Truncated GEI

(TGEI) [1]. In all these techniques, it is essential to de-

termine the gait cycle of a given sequence, and several
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techniques have been proposed in this scope (e.g., [2, 5,

20]). As stated earlier, this step is a common source of

error, and impacts negatively all subsequent phases in the

processing chain. For the GEI feature in periodic (con-

ventional) algorithms, GEIP for the nth gait cycle of gait

sequence is calculated as

GEIP
n ¼

PTp;n

t¼1 SIt;nðm; nÞ
Tp;n

ð1Þ

where Tp;n is the gait period (in number of frames) and

SIt;nðm; nÞ is the silhouette image of tth frame in nth gait

cycle. The overall GEI feature for any gait sequence is then

averaged over the number of gait cycles (N) to be

considered.

GEIP ¼
PN

n¼1 GEIP
n

N
ð2Þ

While estimating a gait cycle for a gait sequence, its values

obtained from gait period estimations from a gait sequence

are usually averaged out. Ideally, it is the essential property

of a gait cycle estimation algorithm to have no variation in

estimated values for a gait sequence with the assumption

that a subject is walking with a constant speed. To study

the estimation accuracy, we applied the gait period esti-

mation algorithm described in [20] to gait sequences and

the variations in SNR values for all the sequences are ob-

tained. While applying a gait cycle estimation technique,

first, an aspect ratio of a silhouette for each frame is cal-

culated. The vector formed by an aspect ratio obtained

from all frames across the sequence is normalized to re-

move the background and then autocorrelation is comput-

ed. The autocorrelation signal is passed through the first-

order derivative to detect the peaks, which are marked al-

ternatively as gait cycle start and end instances. The signals

showing outputs at various steps are shown in Fig. 3 for

situations where gait period estimation fails miserably for

different view angles. This algorithm is considered to be

most popular and acceptable in the research community

and applied in recent works, [1, 13, 15, 18].

The SNR in dB is a log ratio between the mean value l
of the estimates and its standard deviation r is given by

SNR ¼ 20 log10

l
r

dB: ð3Þ

Larger the SNR, better the gait cycle estimation. We cal-

culated the number of sequences which have SNR below

the certain value (threshold). This statistic is plotted in

Fig. 2a, where different threshold values from 0 dB to 20

dB are marked on the horizontal axis and number of se-

quences (in % of total number of sequences in dataset)

having SNR below the corresponding threshold value is

shown on vertical axis. Nearly 50 % of sequences have

intolerable intra-sequence variations (less than 20 dB) in

the estimation of gait cycle. Another interesting observa-

tion is shown in Fig. 2b, where plot of the average SNR

(vertical axis) across all the subjects for certain view angle

(horizontal axis) is shown. The frontal and back view gait

sequences suffer severely from the low-quality estimation

of gait period. The reason behind this is illustrated in Fig. 3

and it is because of a smaller change in the silhouette

aspect ratio across the sequence that makes difficult to

detect peaks in the autocorrelation signal precisely. Even

for other view angles, the gait cycle estimation is not good

except for lateral or very near lateral gait sequences. Being

considered 30–35 db to be a good estimation range in most

applications like speech processing and wireless commu-

nication, maximum SNR obtained in gait sequences hardly

reaches to the value of 28. These SNR values would be

Fig. 2 Illustration of the gait cycle estimation problem
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further degraded in case of low-quality imaging hardware,

occlusions, far distance and low-quality silhouette extrac-

tion techniques. Thus, it becomes important to use gait

recognition systems independent of a gait period estimation

module.

We propose here to extract features from gait sequences

without considering the concept of cycle. Thus, the GEI

feature for any gait sequence using aperiodic gait recog-

nition, GEIA, is calculated as

GEIA ¼
PT

t¼1 SItðm; nÞ
T

ð4Þ

where T is the number of frames to be considered (or

available) and SItðm; nÞ is silhouette image of tth frame of

gait sequence. The Eqs. (1), (2) and (4) can be easily ex-

tended to the other types of feature such as REI, TGEI.

We tested conventional gait sequence representations

(periodic), such as GEI, REI and TGEI, using recognition

experiments. For an aperiodic feature representation, we

varied a length of sequences and observed the recognition

performance. In particular, each sequence was divided into

M equal parts and only the first N parts of each sequence

were considered for feature extraction purposes. N was

varied in the ½1; 20� interval (corresponding to 5–100 % of

the available data in each sequence). Three different fea-

ture extraction techniques were tested (GEI, REI and

TGEI) and nearest neighbor (kNN) algorithm used for

classification purposes. Assuming a multi-view scenario,

all view angles were considered for gallery and probe data,

while instances of both being mutual exclusive sets of each

other. The recognition rate r was used as performance

measure, given by

r ¼ TP

T
ð5Þ

where TP and T are number of true positives and gait

samples tested.

The results of recognition experiments for different

types of feature are plotted in Fig. 4, where the horizontal

axis for the first three plots using dotted lines corresponds

Fig. 3 Gait period estimation processing steps for different view

angle gait sequences. Column-wise: 1 Frontal, 2 Oblique and 3

Lateral. Row-wise: a input silhouette sequence; b silhouette aspect

ratio; c Normalized aspect ratio; d background removal e autocorre-

lation and f first-order derivative (blue) and detected peak locations

(green)

Fig. 4 Aperiodic multi-view gait recognition rate (RR) with respect

to the length of sequences and periodic multi-view gait recognition

with 1 gait cycle obtained from gait cycle estimation algorithm
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to the proportion of data used from each sequence. The

vertical axis gives the corresponding recognition effec-

tiveness. For the sake of comparison, we give plots of

constant values using continuous lines, representing the

recognition accuracy results obtained when using data from

one gait cycle, in a periodic recognition scheme. Results

turn evident that using a sufficient amount of data from a

gait sequence, the obtained results are even better than

estimating the gait cycle, which might be due to inaccu-

racies of the gait cycle estimation module.

Some examples of GEI images, which preserve the

distinctive pattern exists on GEI despite of different lengths

of sequences, are considered and are shown in Fig. 5. First

column shows GEI images calculated from 1 gait cycle

(periodic) for different view angles. Corresponding row

images are GEI images computed from different length (in

%) gait sequences (aperiodic) without considering gait

cycle concept. In this figure, distinctive locations in GEI

are shown in each view angle across the length. It is visible

that distinctive patterns in GEI are maintained in all se-

quences, despite of different lengths. Thus, it supports the

hypothesis of aperiodic gait representation; that after suf-

ficient length of gait sequence, GEI feature image calcu-

lated in an aperiodic manner has no variation across the

lengths of sequence.

We concluded at this point that, if an accumulation of

gait energy averaged over a sufficient period is provided,

the recognition performance attains satisfactory values.

1 Gait Cycle 60% Seq Length 70% Seq Length 80% Seq Length 90% Seq Length 100% Seq Length

1 Gait Cycle 60% Seq Length 70% Seq Length 80% Seq Length 90% Seq Length 100% Seq Length

1 Gait Cycle 60% Seq Length 70% Seq Length 80% Seq Length 90% Seq Length 100% Seq Length

1 Gait Cycle 60% Seq Length 70% Seq Length 80% Seq Length 90% Seq Length 100% Seq Length

1 Gait Cycle 60% Seq Length 70% Seq Length 80% Seq Length 90% Seq Length 100% Seq Length

Fig. 5 GEI images for different view angles; first column images calculated from periodic gait cycle (periodic) and corresponding row images

various lengths of gait sequences aperiodically (aperiodic)
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Empirically, the minimal amount of data required were

estimated in about 1.5 times the gait cycle for the GEI

feature extraction technique. For both the REI and TGEI

techniques, a value of 2 times the gait cycle was considered

sufficient for attaining satisfactory performance.

It is worth mentioning here, though sufficient period is

1.5 or 2 times of gait cycle, it is not at all necessary to

measure the gait cycle in a gait sequence in case of pro-

posed aperiodic feature extraction. The approximation of

sufficient period is well acceptable as the walking of any

human can be accurately defined in the certain range of

time required to complete one gait cycle. The typical value

of gait cycle for subject can be around 2 s. Thus, accu-

mulating gait energy over a at least (not exactly) 3–4 s can

make a practical gait biometric system free from the gait

cycle estimation block. In most of the practical biometrics

identification or surveillance scenarios, it is reasonable to

expect a subject to be walking normally for at least 3–4 s at

a time in certain direction. Thus, the proposed aperiodic

feature representation for a gait sequence is highly

achievable.

The main advantages of an aperiodic gait recognition

over a periodic gait recognition can be summarized as

follows:

– The error-prone gait cycle estimation block is not

required and thus, reducing the computations required

for gait period estimation. In other words, it increases

the reliability and reduces the computational burden.

– Since, gait feature image is accumulated at each frame

and not at the gait cycle level, an aperiodic gait

recognition can be used for continuous person

identification.

– The negative impact of occlusions, far distance data

capture and low-quality silhouette extraction technique

can be reduced.

– Aperiodic gait recognition algorithms can be directly

applied to the other actions, which are aperiodic in a

motion profile. Thus, these algorithms become the

generalized class for activity-based biometrics

applications.

4 Fusion approach for aperiodic feature
representation

The conventional gait recognition techniques may be

suitable in case of a periodic feature extraction using gait

cycle estimation. However, there is a high possibility that

these techniques would give unacceptable performance in

case of an aperiodic feature extraction. Degradation in the

performance of aperiodic techniques is primarily because

of over-fitting that occurs in the process of learning model

and it becomes uncontrollable for unseen probe gait se-

quences. In aperiodic feature methods, there is a high

probability of having variations at few pixels arbitrary in

positions in their silhouette-based representation, causing

over-fitting. These variations may be small, but definitely,

would be larger as compared to that appear in case of a

periodic feature extraction. This is the reason that con-

ventional gait recognition techniques cannot be used in

their original form for an aperiodic gait representation.

Thus, there is a need to devise a strategy to handle the issue

of over-fitting in an aperiodic feature extraction.

A view transformation model is the core phase of any

cross-view gait recognition method. According to the re-

sults observed in Fig. 4, the GEI-based gait representation

feature was chosen here, though it can be easily replaced

by TGEI, REI etc. There are two macro-level requirements

in a cross-view transformation model. One is applying a

transformation between two angles which are separated by

smaller angular span and another is a transformation be-

tween angles with larger difference. Intuitively, the use of a

feature representation in different subspaces can handle

these requirements intelligently. The discriminant feature

space in the form of Linear Discriminant Analysis (LDA)

has been effectively used in a gait recognition. The LDA

has been proved to be optimal, especially when the cross-

view angles’ difference is small and thus, it is important to

take advantage of it along with VTM. Interestingly, we

observed that representations obtained from (1) dimen-

sionality reduction techniques (LDA subspace, as sug-

gested in [4, 10]) and (2) the transformation model, appear

to have some degree of complementarity in handing the

two different requirements of cross-view scenario. The gait

features in LDA subspace are particularly effective for

minor view differences (between probe and gallery),

whereas the view-transformed subspace obtained using

transformation models outperforms in case of large angular

differences. Nearest neighbor was used for classification

purposes. Hence, three recognition algorithms with features

in different subspaces were considered in this phase: (1)

LDA subspace, GEI ? LDA ? kNN; (2) View-Transform

Subspace, GEI ? VTM ? kNN; and (3) Original Sub-

space, GEI ? kNN.

The fusion approach can be used to combine the ad-

vantages of LDA and VTM. Three individual strategies, to

be used here, have been empirically found efficient, are

shown in Fig. 6. It is well-known fact that LDA subspace is

used to reduce the dimensionality of large dimension data.

The compact representation of a gait sequences enables to

calculate the most discriminative information [4]. This

leads to a large decision margin between representations of

any two classes and makes the classification problem more

tractable. Due to a large decision margin, classification

process becomes more tolerable to small variations in pose
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angles of gait sequences. The VTM is constructed to nullify

the pose angle variation in gait sequences. This is espe-

cially required in the case of large pose angle difference

between probe and gallery gait sequences. Thus, LDA and

VTM become complementary to each other in handling the

large range pose angle difference between probe and gal-

lery. Besides LDA and VTM subspaces, the GEI feature in

its original space in small extent can be a catalyst for the

overall performance of the fusion approach. Fusion was

performed at the score level, according to two different

rules: (1) the min rule, corresponding to consider the best

matching score among the three algorithms; and (2) ac-

cording to the weighted sum rule, which is known to

usually attain a maximal effectiveness. Also, the switch-

based fusion approach was considered, to profit from the

best cases of each algorithm: in case of probe/gallery

similar view angles, the GEI ? LDA algorithm is pre-

ferred; in the remaining cases, the general fusion rule

should be considered. This switch step can be easily im-

plemented, using a module, which estimates the view angle

of a given sequence. If the angular span between probe

angle and available gallery angle is less than a certain

absolute value, the GEI ? LDA is used to identify the gait

sequence; otherwise, fusion of features from multiple

spaces is employed. This switch-based fusion scheme is

depicted in Fig. 7.

5 Experiments and discussion

The gait recognition experiments reported in this paper

were carried out with the CASIA Gait database B [21]. It

contains 124 subjects and 6 gait sequence instances per

subject. We divided the dataset into two disjoint sets:

training, containing the first 4 instances from each subject;

and test, that contains the remaining sequences. The first 24

subjects of the training set were used for obtaining the

VTM and for the view angle estimation module. The

recognition experiments were performed, by randomly

drawing the samples to be used as probe from test set such

that length of each sequence has random length but larger

than minimum length. The threshold of minimum length is

60 % of full sequence, approximately amounts to the 1.5

times the gait cycle. The training samples in a gallery were

of full lengths. To bring statistical significance in the ex-

periments of random lengths of test sequences, we per-

formed some experiments 50 times for the aperiodic

weighted fusion method for cross-view recognition (ref

LDA

GEI

VTM

Fusion

Weights

kNN

Classifier

Fig. 6 Fusion of three

subspaces, namely,

GEI ? LDA (discriminant

subspace), GEI ? VTM (view-

transformed subspace) and

GEI ? kNN (original subspace)

LDA

GEI

TGEI

LDA based

View angle

Classification

Angular span

between Probe

and Gallery

VTM

Fusion

Weights

i fC < Th
P= S1

else
P= S2

S1

S2

C

P

kNN

Classifier

Fig. 7 Switch-based fusion

using view angle classification
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Fig. 11) and 20 times for aperiodic multi-view gait

recognition (ref Fig. 8).

5.1 Multi-view gait recognition

In a multi-view recognition scheme, all angles were included

in the gallery, i.e., angles from 0� to 180�, with a step of 18�.

The rank-1 recognition rates for each of the view angles of

the probe sequences are shown in Fig. 8. Three line series

denote the results obtained by GEI (in blue), REI (in green)

and TGEI (in red) feature representations. Again, it is evident

that the GEI yields maximal effectiveness. Also, having non-

uniform lengths of gaits for extracting the features do not

affect the performance, if a minimal length (of about 1.5

times the gait cycle) is provided. This observation was the

main justification for excluding the gait cycle detection step

from the recognition algorithm.

5.2 Cross-view gait recognition

For comparison purposes, the performances of techniques

mentioned above were compared against state-of-the-art

gait recognition methods: the GEI ? VTM, being the

VTM obtained by singular value decomposition [18], and

the GEI ? CCA, being the regression model obtained by

canonical correlation analysis [1]. The regression-based

methods using SVR [13] and neural network [14] are de-

pendent on the ROI of source-view GEI for determining

the every pixel in the target view. It is observed that these

two methods are very much sensitive to the ROI of cor-

related pixels in GEI. Though these methods give better

performance in periodic gait recognition methods, they

have badly failed in the case of aperiodic feature repre-

sentation, due to the problem of over-fitting in regression

model. The performance values for considered techniques

are given in Fig. 9. The results obtained for the GEI feature

representation in the original, LDA and VTM spaces, and

by the above-referred fusion strategies are shown in Fig. 9.

The horizontal axes denote the angle of gallery data and the

title above each plot gives the angle of probes. The vertical

axes contain the recognition rates observed. We observed

that feature representation in the LDA space gives notori-

ously better results than for VTM, in case of slight de-

viations between probe and gallery angles.

Complementary, GEI ? VTM outperforms in cases of

large differences between the view angles of probes and

gallery data. Hence, it is straightforward to consider the

potential benefits of fusing both techniques. Also, as GEI

feature in the original space (GEI ? kNN) did not achieve

best performance in any case, we decided not to include it

in the plots, for clarity purpose.

The ‘Minimum Fusion’ in Fig. 9 represents results ob-

tained when considering only the best matching score

among the three techniques fused. In this case, we observed

that this fusion scheme optimally combines the advantages

of GEI ? LDA and GEI ? VTM for frontal / back side

view angles of probes. Oppositely, it decreases its effec-

tiveness for lateral and near lateral viewing angles. Re-

garding the weighted fusion rule, corresponding weight

values of [0.8, 0.8, 0.1] were used (empirically adjusted).

This rule was observed to achieve a more reasonable bal-

ance of the advantages of GEI ? LDA and GEI ? VTM,

overcoming the shortcomings observed for the minimum

rule fusion. It is especially evident that, for lateral and

frontal view angles of probes, this technique captures the

maximal effectiveness of GEI ? LDA at near deviation

gallery angles and of GEI ? VTM at far deviation gallery

angles. As such, we concluded that it achieved the most

satisfactory performance.

The comparison of weighted fusion performance is also

done with SVR and neural network-based regression meth-

ods in Fig. 10. It is clearly visible from these plots that these

methods do not work up to the expected level in case of

aperiodic feature extraction, though the methods claimed to

be one the best in case of periodic gait recognition algo-

rithms. One more disadvantage with the SVR- and NNR-

based methods is the high dependency on the ROI used for

regression, where localization of body parts is required.

For summarization and comprehensibility, the rank-1

recognition rates for each of the probe angles were aver-

aged over the gallery angles and are listed in Table 1.

Accordingly, our main observations were as follows: (1)

the GEI ? CCA method strongly decreases its effective-

ness when gallery and probe view angles are strongly de-

viated; and (2) The weighted fusion rule is able to

assimilate the advantages of GEI ? VTM and

Fig. 8 Aperiodic multi-view gait recognition with random lengths of

sequences (each experiment were repeated 20 times); GEI gait energy

image, REI radon transform energy image and TGEI truncated GEI
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Fig. 9 Comparison of Aperiodic cross-view gait recognition rates (excluding the same-view), obtained with random lengths of sequences for

each probe
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GEI ? LDA in small/large deviation angles, turning its

performance better than any of the individual state-of-the-

art approaches. The results of weighted fusion are obtained

again by repeating the experiment 50 times as each time

test sample of drawn of different lengths randomly. The

error plots with mean and standard deviation for the sta-

tistical results with weighted fusion method for each probe

angle with respect to gallery angle are shown in Fig. 11. It

shows the high statistical confidence in the results as each

random experiment almost gives same result (very less

variations). In this context, it should be stressed that even

better performance might be possible, if more sophisticated

optimization techniques, either linear (e.g., regression) or

non-linear (e.g., neural networks), are used to find the

optimal values for the weights of each algorithm.

5.2.1 View angle classification and switch-based fusion

As stated earlier, in cross-view scenarios, it is neces-

sary to know the view angle of the probe, which can

be used in the fusion scheme to decide the weights

given to each basis algorithm, with respect to the

deviation between gallery and probe angles. It is

essential to have an accurate view angle of probe

Fig. 10 Comparative recognition performance with SVR and NNR VTM and proposed approach of weighted fusion aperiodic gait recognition

Table 1 Recognition rate (averaged over all cross-view gallery angles) for each of the probe angles

Method Cross-view probe angles� Avg.

0 18 36 54 72 90 108 126 144 162 180

GEI ? LDA [4] 19.70 24.89 25.67 23.85 27.26 26.98 29.87 25.04 20.08 18.79 15.97 23.46

GEI ? VTM [18] 22.38 27.07 27.48 27.55 29.08 28.07 29.37 31.02 30.55 23.87 24.15 27.32

GEI ? CCA [1] 6.77 11.08 10.60 8.22 10.84 10.36 11.33 8.14 5.96 6.45 6.77 8.77

Min. Fusion 25.14 28.72 28.43 24.68 30.58 31.46 35.12 27.86 23.64 22.41 23.26 27.39

Weig. Fusion [Proposed] 23.34 28.51 29.62 30.37 32.28 30.87 32.66 34.40 32.53 25.34 25.00 29.53

Pattern Anal Applic

123



sample so that appropriate weights can be applied to

multi-algorithms. The Table 2 gives the view angle

classification rates, obtained by the GEI ? LDA and

TGEI ? LDA techniques. In this case, it is obvious

that TGEI should be preferred over a GEI for view

angle classification. For further improvement, the view

angle classification estimator can be used as a switch

for the selection between the GEI ? LDA and fusion

approaches. The rank-1 recognition rate was obtained

for two different angular spans: ±18� and ±36�. On

observing the last rows of Table 3, it is evident that

the switch-based fusion with span angle of ±18�

Fig. 11 The error plots with mean and standard deviation showing statistical confidence in results (no of experiments ¼ 50) with weighted

fusion method of aperiodic gait recognition

Table 2 View angle classification rate (VA)

Method Probe angles� Avg total

0 18 36 54 72 90 108 126 144 162 180

VA, GEI ? LDA 55.23 47.32 52.67 48.13 44.39 48.53 34.16 42.30 35.62 55.60 46.61 46.43

VA, TGEI ? LDA 96.65 97.11 84.36 89.21 92.94 84.10 91.25 94.87 92.27 97.41 99.15 92.63

Table 3 Cross-view recognition rate (CV) using switch fusion

Method Probe angles� Avg total

0 18 36 54 72 90 108 126 144 162 180

CV, switch fusion with angle span of ±18� 26.82 31.85 34.73 32.98 34.77 37.86 38.79 39.87 33.64 27.32 28.00 33.33

CV, switch fusion with angle span of ±36� 27.23 32.22 32.67 29.50 35.22 37.61 40.41 36.41 30.81 25.99 26.56 32.24
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significantly improves the cross-view recognition per-

formance, when compared to the weighted sum fusion

rule.

5.2.2 Summary

To conclude, the summary of the overall cross-view

recognition rates (excluding same-view recognition rate)

obtained in this work is shown in Fig. 12. Each bar de-

notes a recognition algorithm and the vertical axis gives

the rank-1 recognition rates, which justifies such low

rates, if the plot is regarded at a glance. At the end, we

observed that the techniques proposed in this paper

achieved significantly better results over the existing

state-of-the-art approaches. Quantitatively, the overall of

6 % additional recognition accuracy is improved using a

fusion strategy over GEI ? VTM method. This amounts

to the almost 22 % improvement over the result of

GEI ? VTM technique, which was the best method in

existing techniques when applied to the aperiodic feature

extraction. The qualitative comparison for the state-of-

the-art and proposed techniques applied to the aperiodic

gait representations is tabulated in Table 4. Also, it is

noteworthy to mention that results were obtained using

arbitrary lengths of gait sequences in probe set, to test the

robustness of aperiodic gait recognition for unconstrained

biometrics applications.

6 Conclusions

In this paper, we focused on a gait recognition to be used in

low-quality gait data obtained in the unconstrained setups.

In these situations, it is difficult to have a reliable estimate

of a gait cycle. Hence, three major contributions are re-

ported here: (1) we proposed an aperiodic recognition

scheme, neglecting the concept of cycle; (2) for multi-view

scenarios, our experiments showed that satisfactory per-

formance can be obtained by aperiodic recognition algo-

rithms when a sufficient amount of data are used (�1.5

times of the average gait cycle), eliminating the need to

segment data in terms of cycles; (3) for cross-view sce-

narios, we fuse the responses attained from different fea-

ture subspaces of aperiodic feature representations at the

scores level, yielding improvement in the recognition

performance of around 22 %, when compared to the best of

state-of-the-art gait recognition algorithms. These contri-

butions are regarded as achievements toward the develop-

ment of robust gait recognition algorithms, able to work in

data of reduced quality and with significant deviations

between the view angles of probes and gallery samples, as

often occurs in visual surveillance scenarios and in un-

constrained biometrics.

Fig. 12 Comparison of the cross-view recognition rates (excluding

the same-view)

Table 4 Qualitative comparison of gait recognition techniques in periodic and aperiodic gait representations

Method Subspace formation Performance in periodic

gait representation

Performance in aperiodic

gait representation

Computational

efficiency

GEI Original Low Low Moderate

GEI ? CCA [1] CCA Moderate Low Moderate

GEI ? LDA [4] LDA Moderate Moderate Low

GEI ? VTM [18] SVD Moderate Low Moderate

GEI ? SVR [13] SVR Better Very low High

GEI ? NNR [14] NNR Best Very low Very high

Min fusion (original, LDA, SVD) Subspace selection Not applicable Moderate Moderate

Weighted fusion

(original ? LDA ? SVD) [proposed]

Subspace addition Not applicable Better Moderate

Switch fusion (weighted fusion and

GEI ? LDA) [proposed]

Subspace addition

and selection

Not applicable Best Moderate
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