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Chapter 8
GAN Fingerprints in Face Image
Synthesis

João C. Neves, Ruben Tolosana, Ruben Vera-Rodriguez, Vasco Lopes,
Hugo Proença, and Julian Fierrez

The availability of large-scale facial databases, together with the remarkable pro-0

gresses of deep learning technologies, in particular Generative Adversarial Networks1

(GANs), have led to the generation of extremely realistic fake facial content, raising2

obvious concerns about the potential for misuse. Such concerns have fostered the3

research on manipulation detection methods that, contrary to humans, have already4

achieved astonishing results in various scenarios. This chapter is focused on the anal-5

ysis of GAN fingerprints in face image synthesis. In particular, it covers an in-depth6

literature analysis of state-of-the-art detection approaches for the entire face synthe-7

sis manipulation. It also describes a recent approach to spoof fake detectors based8

on a GAN-fingerprint Removal autoencoder (GANprintR). A thorough experimental9

framework is included in the chapter, highlighting (i) the potential of GANprintR10

to spoof fake detectors, and (ii) the poor generalisation capability of current fake11

detectors.12

8.1 Introduction13

Images1 and videos containing fake facial information obtained by digital manipula-14

tion have recently become a great public concern (Cellan-Jones 2019). Up until the15

advent of DeepFakes a few years ago, the number and realism of digitally manip- AQ116

1The present chapter is an adaptation from the following article: Neves et al. (2020). DOI: http://
dx.doi.org/10.1109/JSTSP.2020.3007250.
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2 J. C. Neves et al.

ulated fake facial contents were very limited by the lack of sophisticated editing17

tools, the high domain of expertise required, and the complex and time-consuming18

process involved to generate realistic fakes. The scientific communities of biometrics19

and security in the past decade paid some attention in understanding and protecting20

against those limited threats around face biometrics (Hadid et al. 2015), with special21

attention to presentation attacks conducted physically against the face sensor (cam-22

era) using various kinds of face spoofs (e.g. 2D or 3D printed, displayed, mask-based,23

etc.) (Hernandez-Ortega et al. 2019; Galbally et al. 2014).24

However, nowadays it is becoming increasingly easy to automatically synthesise25

non-existent faces or even to manipulate the face of a real person in an image/video,26

thanks to the free access to large public databases and also to the advances on deep27

learning techniques that eliminate the requirements of manual editing. As a result,28

accessible open software and mobile applications such as ZAO and FaceApp have29

led to large amounts of synthetically generated fake content (ZAO 2019; FaceApp30

2017).31

The current methods to generate digital fake face content can be categorised into32

four different groups, regarding the level of manipulation (Tolosana et al. 2020c;33

Verdoliva 2020): (i) entire face synthesis, (ii) face identity swap, (iii) facial attribute34

manipulation and (iv) facial expression manipulation.35

In this chapter, we focus on the entire face synthesis manipulation, where36

a machine learning model, typically based on Generative Adversarial Networks37

(GANs) (Goodfellow et al. 2014), learns the distribution of the human face data,38

allowing to generate non-existent faces by sampling this distribution. This type of39

facial manipulation provides astonishing results and is able to generate extremely40

realistic fakes. Nevertheless, contrary to humans, most state-of-the-art detection sys-41

tems provide very good results against this type of facial manipulation, remarking42

how easy it is to detect the GAN “fingerprints” present in the synthetic images.43

This chapter covers the following aspects in the topic of GAN Fingerprints:44

• An in-depth literature analysis of the state-of-the-art detection approaches for45

the entire face synthesis manipulation, including the key aspects of the detection46

systems, the databases used for developing and evaluating these systems, and the47

main results achieved by them.48

• An approach to spoof state-of-the-art facial manipulation detection systems, while49

keeping the visual quality of the resulting images. Figure 8.1 graphically sum-50

marises the approach presented in Neves et al. (2020) based on a GAN-fingerprint51

Removal autoencoder (GANprintR).52

• A thorough experimental assessment of this type of facial manipulation consider-53

ing fake detection (based on holistic deep networks, steganalysis, and local arti-54

facts) and realistic GAN-generated fakes (with and without the proposed GAN-55

printR) over different experimental conditions, i.e. controlled and in-the-wild sce-56

narios.57
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8 GAN Fingerprints in Face Image Synthesis 3
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Fig. 8.1 Architecture of the GAN-fingerprint removal approach. In general, the state-of-the-
art face manipulation detectors can easily distinguish between real and synthetic fake images. This
usually happens due to the existence and exploitation by those detectors of GAN “fingerprints”
produced during the generation of synthetic images. The GANprintR approach proposed in Neves
et al. (2020) aims to remove the GAN fingerprints from the synthetic images and spoof the facial
manipulation detection systems, while keeping the visual quality of the resulting images

• A recent database named iFakeFaceDB,2 resulting from the application of the58

GANprintR approach to already very realistic synthetic images.59

The remainder of the chapter is organised as follows. Section 8.2 summarises60

the state of the art on the exploitation of GAN fingerprints for the detection of61

entire face synthesis manipulation. Section 8.3 explains the GAN-fingerprint removal62

approach (GANprintR) presented in Neves et al. (2020). Section 8.4 summarises the63

key features of the real and fake databases considered in the experimental assessment64

of this type of facial manipulation. Sections 8.5 and 8.6 describe the experimental65

setup and results achieved, respectively. Finally, Sect. 8.7 draws the final conclusions66

and points out some lines for future work.67

2 https://github.com/socialabubi/iFakeFaceDB.
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4 J. C. Neves et al.

8.2 Related Work68

Contrary to popular belief, image manipulation dates back to the dawn of photog-69

raphy. Nevertheless, image manipulation only became particularly important after70

the rise of digital photography, due to the use of image processing techniques or71

low-cost image editing software. As a consequence, in the last decades the research72

community devised several strategies for assuring authenticity of digital data. In73

addition, digital image tampering still required some level of expertise to deceive the74

humans’ eye, and both factors helped reducing significantly the use of manipulated75

content for malicious purposes. However, after the proposal of Generative Adversar-76

ial Networks (Goodfellow et al. 2014), the possibility of synthesising realistic digital77

content became possible. Among the four possible levels of face manipulation, this78

chapter focuses on the entire face synthesis manipulation, particularly on the problem79

of distinguishing between real and fake facial images.80

Typically, synthetic face detection methods rely on the “fingerprints” caused by81

the generation process. According to the type of fingerprints used, each approach82

can be broadly divided into three categories: (i) methods based on visual artifacts;83

(ii) methods based on frequency analysis; and (iii) learning-based approaches for84

automatic fingerprint estimation. Table 8.1 provides a comparison of the state-of-85

the-art synthetic face detection methods.86

The following sections describe the state-of-the-art techniques for synthetic data87

generation and review the state-of-the-art methods capable of detecting synthetic88

face imagery according to the taxonomy described above.89

8.2.1 Generative Adversarial Networks90

Proposed by Goodfellow et al. (2014), GANs are a novel generative concept, com-91

posed of two neural networks contesting each other in the form of a competition. A92

generator learns to generate instances that resemble the training data, while a dis-93

criminator learns to distinguish between the real and the generated images, while94

serving the goal of penalising the generator. The goal is to have a generator that95

can learn how to generate plausible images that can fool the discriminator. While96

at the beginning, GANs were only capable of producing low-resolution images of97

faces with some notorious visual artifacts, in the last years several techniques have98

emerged for synthesising highly realistic content (including BigGAN Brock et al.99

2019, CycleGAN Zhu et al. 2017, GauGAN Park et al. 2019, ProGAN Karras et al.100

2018, StarGAN Choi et al. 2018, StyleGAN Karras et al. 2019, and StyleGAN2101

Karras et al. 2020) that even humans cannot distinguish from the real ones. Next, we102

review the state-of-the-art approaches specifically devised for detecting a entire face103

synthesis manipulation.104
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8 J. C. Neves et al.

8.2.2 GAN Detection Techniques105

As denoted before, the images generated by the initial versions of GANs exhibited106

several visual artifacts, including distinct eye colour, holes in the face, deformed107

teeth, among others. For this reason, several approaches attempted to leverage these108

traits for detecting face manipulations (Matern et al. 2019; Yang et al. 2019; Hu et al.109

2020). Matern et al. (2019) extracted several geometric facial features which were110

then fed to a Support Vector Machine (SVM) classifier to distinguish between real111

and synthetic face images. Yang et al. (2019) exploited the weakness of GANs in112

generating consistent head poses and trained a SVM to distinguish between real and113

synthetic faces based on the estimation of the 3D head pose. As the remaining artifacts114

became less noticeable, researchers focused on more subtle features of the face, as115

in Hu et al. (2020), where synthetic face detection was performed by analysing the116

difference between the two corneal specular highlights. Other visual artifact typically117

exploited is the probability distribution of colour channels. McCloskey (McCloskey118

and Albright 2018) hypothesised that the colour is markedly different between real119

camera images and fake synthesis images, and proposed a detection system based120

on the colour histogram and a linear SVM. In He et al. (2019), the authors exploited121

different colour channels (YCbCr, HSV and Lab) to extract from a CNN different122

deep representations, which were subsequently fed to a Random Forest classifier123

for distinguishing between real and synthetic data. Li et al. (2020) observed that it124

is easier to spot the differences between real and GAN-generated data in non-RGB125

colour spaces, since GANs are trained for producing content in RGB channels.126

As the quality and realism of synthetic data improved, visual artifacts started to127

become ineffectual, which in turn fostered researchers to explore digital forensic128

techniques for the problem of synthetic data detection. Each camera sensor leaves129

a unique and stable mark on each acquired photo, denoted as the photo-response130

non-uniformity (PRNU) pattern (Lukás et al. 2006). This mark is usually denoted as131

the camera fingerprint, which inspired researchers to detect the presence of similar132

patterns in images synthesised by GANs. These approaches usually define the GAN133

fingerprint as a high-frequency signal available in the image. Marra et al. (2019a)134

defined GAN fingerprint as the high-level image information obtained by subtracting135

the image from its corresponding denoised version. Yu et al. (2018) improved (Marra136

et al. 2019a) by subtracting from the original image the corresponding reconstructed137

version obtained from an autoencoder, which was tuned based on the discriminability138

of the fingerprints inferred by this process. They learned a model fingerprint for each139

source (each GAN instance plus the real world), such that the correlation index140

between one image fingerprint and each model fingerprint gives the probability of141

the image being produced by a specific model. Their proposed approach was tested142

using real faces from CelebA database (Liu et al. 2015) and synthetic faces created143

through different GAN approaches (PGGAN Karras et al. 2018, SNGAN Miyato144

et al. 2018, CramerGAN Bellemare et al. 2017, and MMDGAN Binkowski et al.145

2018), achieving a final accuracy of 99.50% for the best performance. Later, they146

extended their approach Yu et al. (2020b) by proposing a novel strategy for the147
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8 GAN Fingerprints in Face Image Synthesis 9

training of the generative model such that the fingerprints can be controlled by the148

user, and easily decoded from a synthetic image, allowing to solve the problem of149

source attribution, i.e. identifying the model that generated the image. In Albright150

and McCloskey (2019), the authors proposed an alternative to Yu et al. (2018) by151

replacing the autoencoder by an inverted GAN capable of reconstructing an image152

based on the attributes inferred from the original image. Zhang et al. (2019) proposed153

the use of the up-sampling artifact in the frequency domain as a discriminative feature154

for distinguishing veridical and synthetic data. Frank et al. (2020) reported similar155

conclusions regarding the discriminability of the frequency space of GAN-generated156

images. They relied on the Discrete Cosine Transform (DCT) for extracting features157

from either real and fake images, in order to train a linear classifier. Durall et al. (2020)158

found out that upconvolution or transposed convolution layers of GAN architectures159

are not capable of reproducing the spectral distribution of natural images. Based160

on this finding, they showed that generated face images can be easily identified161

by training a SVM with the features extracted with the Discrete Fourier Transform162

(DFT). Guarnera et al. (2020) used pixel correlation as a GAN fingerprint, since they163

noticed that the correlation of pixels in synthetic images are exclusively dependent164

on the operations performed by all the layers present in the GAN which generate it.165

Their proposed approach was tested using fake images generated by several GAN166

architectures (AttGAN, GDWCT, StarGAN, StyleGAN and StyleGAN2).167

A distinct family of methods adopts a data-driven strategy for the problem of168

detecting GAN-generated imagery. In this strategy, a standard image classifier, typ-169

ically a Convolutional Neural Network (CNN), is trained directly with raw images170

or through a modified version of them (Barni et al. 2020; Hsu et al. 2020). Marra171

et al. (2018) carried out a study about the classification accuracy of different CNN172

architectures when fed with raw images. It was observed that, in spite almost ideal per-173

formance was obtained, the performance decreased significantly when compressed174

images were used in the test set. Later, the authors proposed a strategy based on175

incremental learning for addressing this problem and the generalisation to unseen176

datasets (Marra et al. 2019c). Inspired by the forensic analysis of image manipulation177

(Cozzolino et al. 2014), Nataraj et al. (2019a) proposed a detection system based on178

a combination of pixel co-occurrence matrices and CNNs. Their proposed approach179

was initially tested in a database of various objects and scenes created through Cycle-180

GAN (Zhu et al. 2017). Besides, the authors performed an interesting analysis to see181

the robustness of the proposed approach against fake images created through differ-182

ent GAN architectures (CycleGAN vs. StarGAN), with good generalisation results.183

This idea was later improved in Goebel et al. (2020) and Barni et al. (2020).184

The above studies show that a simple CNN is able to easily distinguish between185

real and synthetic data generated from specific GAN architectures, but is not capable186

of maintaining the same performance in data originated from GAN architectures not187

seen during training or even in data altered by image filtering operations. For this188

reason, Xuan et al. (2019) used an image pre-processing step in the training stage189

to remove artifacts of a specific GAN architecture. The same idea was exploited190

in Hulzebosch et al. (2020) to improve the accuracy in real-world scenarios, where191

the particularities of the data (e.g. image compression) and the generator architecture192
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10 J. C. Neves et al.

are not known. Liu et al. (2020) observed that the texture of fake faces is substantially193

different from the real ones. Based on this observation, the authors devised a novel194

block to be added to the backbone of a CNN, the Gram-Block, which is capable of195

extracting global image texture features and improve the generalisation of the model196

against data generated by GAN architectures not used during training. Similarly,197

Yu et al. (2020a) introduced a novel convolution operator intended for separately198

processing the low- and high-frequency information of the image, improving the199

capability to detect the patterns of synthetic data available in the high-frequency200

band of the images. Finally, Wang et al. (2020a) studied the topic of generalisation to201

unseen datasets. For this, they collected a dataset consisting of fake images generated202

by 11 different CNN-based image generator models and concluded that the correct203

combination of pre-processing and data augmentation techniques allows a standard204

image classifier to generalise to unseen dataset even when trained with data obtained205

from a single GAN architecture.206

To summarise this section, we conclude that state-of-the-art automatic detection207

systems against face synthesis manipulation have excellent performance, mostly208

because they are able to learn the GAN fingerprints present in the images. However,209

it is also clear that the dependence on the model fingerprint affects the generability210

and the reliability of the model, e.g. when presented with adversarial attacks (Gandhi211

and Jain 2020).212

8.3 GAN Fingerprint Removal: GANprintR213

GANprintR was originally presented in Neves et al. (2020) and aims at transform-214

ing synthetic face images, such that their visual appearance is unaltered but the215

GAN fingerprints (the discriminative information that permits the distinction from216

real imagery) are removed. Considering that the fingerprints are high-frequency sig-217

nals (Marra et al. 2019a), we hypothesised that their removal could be performed by218

an autoencoder, which acts as a non-linear low-pass filter. We claimed that by using219

this strategy, the detection capability of state-of-the-art facial manipulation detection220

methods significantly decreases, while at the same time humans still are not capable221

of perceiving that images were transformed.222

In general, an autoencoder comprises two distinct networks, encoder ψ and223

decoder γ :224

ψ : X !→ l

γ : l !→ X ′,
(8.1)225

where X denotes the input image to the network, l is the latent feature representation226

of the input image after passing through the encoder ψ , and X ′ is the reconstructed227

image generated from l, after passing through the decoder γ . The networks ψ and228

γ can be learned by minimising the reconstruction loss Lψ,γ (X, X ′) = ||X − X ′||2229

over a development dataset following an iterative learning strategy.230
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8 GAN Fingerprints in Face Image Synthesis 11

Fig. 8.2 GAN-fingerprint Removal module (GANprintR) based on a convolutional AutoEn-
coder (AE). The AE is trained using only real face images from the development dataset. In the
evaluation stage, once the autoencoder is trained, we can pass synthetic face images through it to
provide them with additional naturalness, in this way removing the GAN-fingerprint information
that may be present in the initial fakes

As result, when L is nearly 0, ψ is able to discard all redundant information231

from X and code it properly into l. However, for a reduced size of the latent feature232

representation vector, L will increase and ψ will be forced to encode in l only the233

most representative information of X . We claimed that this kind of autoencoder acts234

as a GAN-fingerprint removal system.235

Figure 8.2 describes the GANprintR architecture based on a convolutional AutoEn-236

coder (AE) composed of a sequence of 3×3 convolutional filters, coupled with ReLU237

activation functions. After each convolutional layer, a 2×2 max-pooling layer is used238

to progressively decrease the size of the activation map to 28×28×8, which repre-239

sents the bottleneck of the reconstruction model.240

The AE is trained with images from a public dataset that comprises face imagery241

from real persons. In the evaluation phase, the AE is used to generate improved fakes242

from input fake faces where GAN “fingerprints”, if present in the initial fakes, will243

be reduced. The main rationale of this strategy is that by training with real images244

the AE can learn the core structure of this type of natural data, which can then be245

exploited to improve existing fakes.246

8.4 Databases247

Four different public databases and one generated are considered in the experimental248

framework of this chapter. Figure 8.3 shows some examples of each database. We249

now summarise the most important features.250
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12 J. C. Neves et al.

CASIA-WebFace (Real)

VGGFace2 (Real)

TPDNE (Synthetic)

100K-Faces (Synthetic)

PGGAN (Synthetic)

Fig. 8.3 Examples of the databases considered in the experiments of this chapter after applying
the pre-processing stage described in Sect. 8.5.1
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8 GAN Fingerprints in Face Image Synthesis 13

8.4.1 Real Face Images251

• CASIA-WebFace: this database contains 494,414 face images from 10,575 actors252

and actresses of IMDb. Face images comprise random pose variations, illumina-253

tion, facial expression and resolution.254

• VGGFace2: this database contains 3,31 million images from 9,131 different sub-255

jects, with an average of 363 images per subject. Images were downloaded from256

the Internet and contain large variations in pose, age, illumination, ethnicity and257

profession (e.g. actors, athletes, and politicians).258

8.4.2 Synthetic Face Images259

• TPDNE: this database comprises 150,000 unique faces, collected from the web-260

site.3 Synthetic images are based on the recent StyleGAN approach (Karras et al.261

2019) trained with FFHQ database (Flickr-Faces-HQ 2019).262

• 100K-Faces: this database contains 100,000 synthetic images generated using263

StyleGAN (Karras et al. 2019). In this database the StyleGAN network was trained264

using around 29,000 photos of 69 different models, producing face images with a265

flat background.266

• PGGAN: this database comprises 80,000 synthetic face images generated using the267

PGGAN network. In particular, we consider the publicly available model trained268

using the CelebA-HQ database.269

8.5 Experimental Setup270

This section describes the details of the experimental setup followed in the experi-271

mental framework of this chapter.272

8.5.1 Pre-processing273

In order to ensure fairness in our experimental validation, we created a curated version274

of all the datasets where the confounding variables were removed. Two different275

factors were considered in this chapter:276

• Background: this is a clearly distinctive aspect among real and synthetic face277

images as different acquisition conditions are considered in each database.278

3 https://thispersondoesnotexist.com.

513475_1_En_8_Chapter ! TYPESET DISK LE ! CP Disp.:13/11/2021 Pages: xxx Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

14 J. C. Neves et al.

• Head pose: images generated by GANs hardly ever produce high variation from279

the frontal pose (Dang et al. 2020), contrasting with most popular real face280

databases such as CASIA-WebFace and VGGFace2. Therefore, this factor may281

falsely improve the performance of the detection systems since non-frontal images282

are more likely to be real faces.283

To remove these factors from both the real and synthetic images, we extracted 68284

face landmarks, using the method described in Kazemi and Sullivan (2014). Given285

the landmarks of the eyes, an affine transformation was determined such that the286

location of the eyes appears in all images at the same distance from the borders. This287

step allowed to remove all the background information of the images while keeping288

the maximum amount of the facial regions. Regarding the head pose, landmarks were289

used to estimate the pose (frontal vs. non-frontal). In the experimental framework of290

this chapter, we kept only the frontal face images, in order to avoid biased results.291

After this pre-processing stage, we were able to provide images of constant size292

(224×224 pixels) as input to the systems. Figure 8.3 shows examples of the crop-293

out faces of each database after applying the pre-processing steps. The synthetic294

images obtained by this pre-processing stage are the ones used to create the database295

iFakeFaceDB after being processed by the GANprintR approach.296

8.5.2 Facial Manipulation Detection Systems297

Three different state-of-the-art manipulation detection approaches are considered in298

this chapter.299

(1) XceptionNet (Chollet 2017): this network was selected, essentially because it300

provides the best detection results in the most recently published studies (Dang et al.301

2020; Rössler et al. 2019; Dolhansky et al. 2019). We followed the same training302

approach considered in Rössler et al. (2019): (i) the model was initialised with the303

weights obtained after training with the ImageNet dataset (Deng et al. 2009), (ii) we304

changed the last fully-connected layer of the ImageNet model by a new one (two305

classes, real or synthetic image), (iii) we fixed all weights up to the final layers and306

pre-trained the network for few epochs, and finally (iv) we trained the network for307

20 more epochs and chose the best performing model based on validation accuracy.308

(2) Steganalysis (Nataraj et al. 2019b): the method by Nataraj et al. was selected309

for providing an approach based on steganalysis, rather than directly extracting fea-310

tures from the images, as in the XceptionNet approach. In particular, this approach311

calculates the co-occurrence matrices directly from the image pixels on each chan-312

nel (red, green and blue), and passes this information through a custom CNN, which313

allows the network to extract non-linear robust features. Considering that the source314

code is not available from the authors, we replicated this technique to perform our315

experiments.316

(3) Local Artifacts (Matern et al. 2019): we have chosen the method of Matern et317

al., because it provides an approach based on the direct analysis of the visual facial318
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8 GAN Fingerprints in Face Image Synthesis 15

artifacts, in opposition to the remaining approaches that follow holistic strategies. In319

particular, the authors of that work claim that some parts of the face (e.g. eyes, teeth,320

facial contours) provide useful information about the authenticity of the image, and321

thus train a classifier to distinguish between real and synthetic face images using322

features extracted from these facial regions.323

All our experiments were implemented under a PyTorch framework, with a324

NVIDIA Titan X GPU. The training of the Xception network was performed using325

the Adam optimiser with a learning rate of 10−3, dropout for model regularisation326

with a rate of 0.5, and a binary cross-entropy loss function. Regarding the steganal-327

ysis approach, we reused the parameters adopted for Xception network, since the328

authors of Nataraj et al. (2019b) did not detail the training strategy adopted. Regard-329

ing the local artifacts approach, we adopted the strategy for detecting “generated330

faces”, where a k-nearest neighbour classifier is used to distinguish between real and331

synthetic face images based on eye colour features.332

8.5.3 Protocol333

The experimental protocol designed in this chapter aims at performing an exhaus-334

tive analysis of the state-of-the-art facial manipulation detection systems. As such,335

three different experiments were considered: (i) controlled scenarios, (ii) in-the-wild336

scenarios, and (iii) GAN-fingerprint removal.337

Each database was divided into two disjoint datasets, one for the development of338

the systems (70%) and the other one for evaluation purposes (30%). Additionally,339

the development dataset was divided into two disjoint subsets, training (75%) and340

validation (25%). The same number of real and synthetic images were considered341

in the experimental framework. In addition, for real face images, different users342

were considered in the development and evaluation datasets, in order to avoid biased343

results.344

The GANprintR approach was trained during 100 epochs, using the Adam opti-345

mizer with a learning rate of 10−3, and a mean square error (MSE) to obtain the346

reconstruction loss. To ensure an unbiased evaluation, GANprintR was trained with347

images from the MS-Celeb dataset (Guo et al. 2016), since it is disjoint from the348

datasets used in the development and evaluation of all the fake detection systems349

used in our experiments.350

8.6 Experimental Results351

This section describes the results achieved in the experimental framework of this352

chapter.353
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16 J. C. Neves et al.

8.6.1 Controlled Scenarios354

In this section, we report the results of the detection of entire face synthesis in355

controlled scenarios, i.e. when samples from the same databases were considered for356

both development and final evaluation of the detection systems. This is the strategy357

commonly used in most studies, typically resulting in very good performance (see358

Sect. 8.2).359

A total of six experiments were carried out: A.1 to A.6. Table8.2 describes the360

development and evaluation databases considered in each experiment together with361

the corresponding final evaluation results in terms of EER. Additionally, we represent362

in Fig. 8.4 the evolution of the loss/accuracy of the XceptionNet and Steganalysis363

detection systems for Exp. A.1.364

The analysis of Fig. 8.4 shows that both XceptionNet and Steganalysis approaches365

were able to learn discriminative features to detect between real and synthetic face366

images. The training process was faster for the XceptionNet detection system com-367

pared with Steganalysis, converging to a lower loss value in fewer epochs (close368

to zero after 20 epochs). The best validation accuracy achieved in Exp. A.1 for the369

XceptionNet and Steganalysis approaches were 99% and 95%, respectively. Similar370

trends were observed for the other experiments.371

We now analyse the results included in Table 8.2 for experiments A.1 to A.6.372

Analysing the results obtained by the XceptionNet system, almost ideal performance373

is achieved with EER values less than 0.5%. These results are in agreement to previous374

studies in the topic (see Sect. 8.2), pointing for the potential of the XceptionNet model375

in controlled scenarios. Regarding the Steganalysis approach, a higher degradation of376

the system performance is observed, when compared with the XceptionNet approach,377

especially for the 100K-Face database, e.g. a 16% EER is obtained in Exp. A.5.378

Finally, it can be observed that the approach based on local artifacts was the least379

efficient to spot the differences between real and synthetic data, with an average380

35.5% EER over all experiments.381

In summary, for controlled scenarios XceptionNet has excellent manipulation382

detection accuracies, then Steganalysis provides good accuracies, and finally Local383

Artifacts have poor accuracy. In the next section we will see the limitations of these384

techniques in-the-wild.385

8.6.2 In-the-Wild Scenarios386

This section evaluates the performance of the facial manipulation detection systems387

in more realistic scenarios, i.e. in-the-wild. The following aspects are considered:388

(i) different development and evaluation databases, and (ii) different image reso-389

lution/blur among the development and evaluation of the models. This last point is390

particularly important, as the quality of raw images/videos is usually modified when,391

e.g. they are uploaded to social media. The effect of image resolution has been pre-392
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8 GAN Fingerprints in Face Image Synthesis 19

liminary analysed in previous studies (Rössler et al. 2019; Korshunov and Marcel393

2018), but for different facial manipulation groups, i.e. face swapping/identity swap394

and facial expression manipulation. The main goal of this section is to analyse the395

generalisation capability of state-of-the-art entire face synthesis detection in uncon-396

strained scenarios.397

First, we focus on the scenario of considering the same real but different syn-398

thetic databases in development and evaluation (Exp. B.1, B.2, B.5, B.6, and so on,399

provided in Table 8.2). In general, the results achieved in the experiments evidence400

a high degradation of the detection performance regardless of the facial manipula-401

tion detection approach. For the XceptionNet, the average EER is 11.2%, i.e. over402

20 times higher than the results achieved in Exp. A.1–A.6 (<0.5% average EER).403

Regarding the Steganalysis approach, the average EER is 32.5%, i.e. more than 3404

times higher than the results achieved in Exp. A.1–A.6 (9.8% average EER). For405

Local Artifacts, the observed average EER was 42.4%, with an average worsening406

of 19%. The large degradation of the first two detectors suggests that they might407

rely heavily on the GAN fingerprints of the training data. This result confirms the408

hypothesis that different GAN models produce different fingerprints, as also men-409

tioned in previous studies (Yu et al. 2018). Moreover, these results suggest that these410

GAN fingerprints are the information used by the detectors to distinguish between411

real and synthetic data.412

Table 8.2 also considers the case of using different real and synthetic databases413

for both development and evaluation (Exp. B.3, B.4, B.7, B.8, etc.). In this scenario,414

an average EERs of 9.3%, 32.3% and 42.3% in fake detection were obtained for415

XceptionNet, Steganalysis and Local Artifacts, respectively. When comparing these416

results with the EERs of the previous experiments (where only the synthetic evalua-417

tion set was changed), no significant gap in performance was found, which points that418

the change of synthetic data might be the main cause for performance degradation.419

(a) XceptionNet [203] (b) Steganalysis [684]

Fig. 8.4 Exp. A.1: Evolution of the loss/accuracy with the number of epochs
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20 J. C. Neves et al.

Finally, we also analyse how different image transformations affect facial manip-420

ulation detection systems. In this analysis, we focus only on the XceptionNet model421

as it provides much better results when compared with the remaining detection sys-422

tems. For each baseline experiment (A.1 to A.6), the evaluation set (both real and423

fake images) was transformed by: (i) resolution downsizing (1/3 of the original res-424

olution), (ii) a low-pass filter (9 × 9 Gaussian kernel, σ = 1.7), and (iii) jpeg image425

compression using a quality level of 60. The resulting EER together with the Recall,426

PSRN and SSIM values are provided in Table 8.3, together with the performance of427

the original images. The results suggest a high performance degradation in all exper-428

iments, proving the vulnerability of the fake detection system to unseen conditions,429

even if they result from simple image transformations.430

To further understand the impact of these transformations, we evaluated an431

increasing downsize ratio in the performance of the fake detection system. Figure 8.5432

depicts the detection performance results in terms of EER (%), from lower to higher433

modifications of the image resolution. In general, we can observe increasingly higher434

degradation of the fake detection performance for decreasing resolution. For exam-435

ple, when the image resolution is reduced by 1/4, the average EER increases 6%436

when compared with the raw image resolution (raw equals to 1/1). This performance437

degradation is even higher when we further reduce the image resolution, with EERs438

(%) higher than 15%. These results support the conclusion about a poor generali-439

sation capacity of state-of-the-art facial manipulation detection systems to unseen440

conditions.441

8.6.3 GAN-Fingerprint Removal442

This section analyses the results of the strategy for GAN-fingerprint Removal (GAN-443

printR). We evaluated to what extent our method is capable of spoofing state-of-the-444

art facial manipulation detection systems by improving fake images already obtained445

with some of the best and most realistic known methods for entire face synthesis.446

For this, the experiments A.1 to A.6 were repeated for the XceptionNet detection447

system, but the fake images of the evaluation set were transformed after passing448

through GANprintR.449

Table 8.3 provides the results achieved for both the original fake data and after450

GANprintR. The analysis of the results shows that GANprintR obtains higher fake451

detection error than the remaining attacks, while maintaining a similar or even better452

visual quality. In all the experiments, the EER of the manipulation detection increases453

when using GANprintR to transform the synthetic face images. Also, the detection454

degradation is higher than other types of attacks for similar PSNR values and slightly455

higher values of SSIM. In particular, the average EER when considering GANprintR456

is 9.8%, i.e. over 20 times higher than the results achieved when using the original457

fakes (<0.5% average EER). This suggests that our method is not simply removing458

high-frequency information (evidenced by the comparison with the low-pass filter459

and downsize) but it is also removing the GAN fingerprints from the fakes improving460
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8 GAN Fingerprints in Face Image Synthesis 21

Table 8.3 Comparison between the GANprintR approach and typical image manipulations.
The detection performance is provided in terms of EER (%) for experiments A.1 to A.6, when using
different versions of the evaluation set. TDE stands for transformation of the evaluation data and
details the technique used to modify the test set before fake detection. Rreal and R f ake denote the
Recall of the real and fake classes, respectively,
Experiment TDE EER (%) Rreal (%) XceptionNet

R f ake (%) PSNR
(db)

SSIM

A.1 Original 0.22 99.77 99.80 – –
Downsize 1.17 98.83 98.87 35.55 0.93
Low-pass filter 0.83 99.17 99.20 34.63 0.92
jpeg compression 1.53 98.47 98.50 36.02 0.96
GANprintR 10.63 89.37 89.40 35.01 0.96

A.2 Original 0.28 99.70 99.73 – –
Downsize 0.87 99.13 99.17 36.24 0.95
Low-pass filter 2.87 97.10 97.13 35.22 0.93
jpeg compression 1.83 98.17 98.20 36.76 0.97
GANprintR 6.37 93.64 93.66 35.59 0.96

A.3 Original 0.02 99.97 100.00 – –
Downsize 3.70 96.27 96.30 34.85 0.91
Low-pass filter 1.53 98.43 98.47 34.10 0.90
jpeg compression 30.93 69.04 69.06 35.85 0.96
GANprintR 17.27 82.71 82.73 34.82 0.95

A.4 Original 0.02 99.97 100.00 – –
Downsize 1.00 98.97 99.00 35.55 0.93
Low-pass filter 0.07 99.90 99.93 34.63 0.92
jpeg compression 2.50 97.47 97.50 36.02 0.96
GANprintR 4.47 95.50 95.53 35.01 0.96

A.5 Original 0.08 99.90 99.93 – –
Downsize 6.27 93.70 93.73 36.24 0.95
Low-pass filter 11.53 88.44 88.46 35.22 0.93
jpeg compression 3.27 96.73 96.77 36.76 0.97
GANprintR 11.47 88.50 88.53 35.59 0.96

A.6 Original 0.05 99.93 99.97 – –
Downsize 7.77 92.24 92.26 34.85 0.91
Low-pass filter 2.10 97.90 97.93 34.10 0.90
jpeg compression 5.37 94.64 94.66 35.85 0.96
GANprintR 8.37 91.64 91.66 34.82 0.95
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22 J. C. Neves et al.

Fig. 8.5 Robustness of the fake detection system regarding the image resolution. The Xcep-
tionNet model is trained with the raw image resolution and evaluated with lower image resolutions.
Note how the EER increases significantly while reducing the image resolution

their naturalness. It is important to remark that different real face databases were461

considered for training the face manipulation detectors and our GANprintR module.462

In addition, we provide in Fig. 8.6 an analysis of the impact of the latent feature463

representation of the autoencoder in terms of EER and PSNR. In particular, we follow464

the experimental protocol considered in Exp. A.3, and calculate the EER of Xcep-465

tionNet for detecting fakes improved with various configurations of GANprintR.466

Moreover, the PSNR for each set of transformed images is also included in Fig. 8.6467

together with a face example of each configuration to visualise the image quality.468

The face examples included in Fig. 8.6 show no substantial differences between the469

original fake and the resulting fakes after GANprintR for the different latent fea-470

ture representation size of the GANprintR, which is confirmed by the tight range of471

PSNR values obtained along the different latent feature representations. The EER472

values of fake detection significantly increase as the size of latent feature represen-473

tations diminish, evidencing that GANprintR is capable of spoofing state-of-the-art474

detectors without significantly degrading the visual aspect of the image.475

Finally, to confirm that GANprintR is actually removing the GAN-fingerprint476

information and not just reducing the image resolution of the images, we performed477

513475_1_En_8_Chapter ! TYPESET DISK LE ! CP Disp.:13/11/2021 Pages: xxx Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

8 GAN Fingerprints in Face Image Synthesis 23

Fig. 8.6 Robustness of the fake detection system after GAN-fingerprint Removal (GAN-
printR). The latent feature representation size of the AE is varied to analyse the impact on both
system performance and visual aspect of the reconstructed images. Note how the EER increases sig-
nificantly when considering GANprintR spoof approach, while maintaining a high visual similarity
with the original image

a final experiment where we trained the XceptionNet for fake detection considering478

different levels of image resolution, and then tested it using fakes improved with479

GANprintR. Figure 8.7 shows the fake detection performance in terms of EER for480

different sizes of the latent feature representation of GANprintR. Five different GAN-481

printR configurations are tested per image resolution. The obtained results point for482

the stability of EER values with respect to downsized synthetic images in training,483

concluding that GANprintR is actually removing the GAN-fingerprint information.484

8.6.4 Impact of GANprintR on Other Fake Detectors485

For completeness, we provide in this section a comparative analysis between the486

impact of the GANprintR approach on the three state-of-the-art manipulation detec-487

tion approaches considered in this chapter. Table 8.4 reports the EER and Recall488

observed when using the original images and when using the modified version of the489

same images.490

In Sect. 8.6.1 it has been concluded that XceptionNet stands out as the most reliable491

approach at recognising synthetic faces. The analysis of Table 8.4 evidences that this492

conclusion also holds when using images transformed by GANprintR. Nevertheless,493

it is also interesting to analyse the performance degradation caused by the GANprintR494

approach. The average number of percentage points that the EER has increased for495

XceptionNet, Steganalysis and Local Artifacts is 9.65, 14.68 and 4.91, respectively.496
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24 J. C. Neves et al.

Fig. 8.7 Robustness of the fake detection system trained with different resolutions and then
tested with fakes improved with GANprintR under various configurations (representation
sizes). Five different GANprintR configurations are tested per image resolution level. The results
observed point for the stability of EER values with respect to using downsized synthetic images in
training. This observation supports the conclusion that GANprintR is actually removing the GAN
fingerprints.

Even though, in this case, the work of Matern et al. (2019) stands out for having497

the lowest performance degradation, we believe that this is primarily due to the high498

EER achieved in the original set of images.499

8.7 Conclusions and Outlook500

This chapter has covered the topic of GAN fingerprints in face image synthesis. We501

have first provided an in-depth literature analysis of the most popular GAN synthesis502

architectures and fake detection techniques, highlighting the good fake detection503

results achieved by most approaches due to the “fingerprints” inserted in the GAN504

generation process.505

In addition, we have reviewed a recent approach to improve the naturalness506

of facial fake images and spoof state-of-the-art fake detectors: GAN-fingerprint507

Removal (GANprintR). GANprintR was originally presented in Neves et al. (2020)508

and is based on a convolutional autoencoder. The autoencoder is trained using only509

real face images from the development dataset. In the evaluation stage, once the510

autoencoder is trained, we can pass synthetic face images through it to provide them511

with additional naturalness, in this way removing the GAN-fingerprint information512

that may be present in the initial fakes.513

A thorough experimental assessment of this type of facial manipulation has been514

carried out considering fake detection (based on holistic deep networks, steganalysis,515

and local artifacts) and realistic GAN-generated fakes (with and without GANprintR)516

over different experimental conditions, i.e. controlled and in-the-wild scenarios. We517
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26 J. C. Neves et al.

highlight three major conclusions about the performance of the state-of-the-art fake518

detection methods: (i) the existing fake systems attain almost perfect performance519

when the evaluation data is derived from the same source used in the training phase,520

which suggests that these systems have actually learned the GAN “fingerprints” from521

the training fakes generated with GANs; (ii) the observed fake detection performance522

decreases substantially (over one order of magnitude) when the fake detection is523

exposed to data from unseen databases, and over seven times in case of substantially524

reduced image resolution; and (iii) the accuracy of the existing fake detection methods525

also drops significantly when analysing synthetic data manipulated by GANprintR.526

In summary, our experiments suggest that the existing facial fake detection meth-527

ods still have a poor generalisation capability and are highly susceptible to—even528

simple—image transformation manipulations, such as downsizing, image compres-529

sion or others similar to the one proposed in this work. While loss of resolution530

may not be particularly concerning in terms of the potential misuse of the data, it531

is important to note that approaches such as GANprintR are capable of confound-532

ing detection methods, while maintaining a high visual similarity with the original533

image.534

Having shown some of the limitations of the state-of-the-art in face manipulation535

detection, future work should research about strategies to harden such face manipu-536

lation detectors by exploiting databases such as iFakeFaceDBiFakeFaceDB.4 Addi-537

tionally, further works should study: (i) how improved fakes obtained in similar538

ways as GANprintR can jeopardise other kinds of sensitive data (e.g. other popular539

biometrics like fingerprint Tolosana et al. 2020a, iris Proença and Neves 2019, or540

behavioural traits Tolosana et al. 2020b), (ii) how to improve the security of systems541

dealing with other kinds of sensitive data (Hernandez-Ortega et al. 2021), and finally542

(iii) best ways to combine multiple manipulation detectors (Tolosana et al. 2021) in543

a proper way (Fiérrez et al. 2018) to deal with the growing sophistication of fakes.544
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