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Abstract: Sparse representations for classification (SRC) are considered a relevant advance to the biometrics field, but are
particularly sensitive to data misalignments. In previous studies, such misalignments were compensated for by finding
appropriate geometric transforms between the elements in the dictionary and the query image, which is costly in terms of
computational burden. This study describes an algorithm that compensates for data misalignments in SRC in an implicit way,
that is, without finding/applying any geometric transform at every recognition attempt. The authors’ study is based on three
concepts: (i) sparse representations; (ii) projections on orthogonal subspaces; and (iii) discriminant locality preserving with
maximum margin projections. When compared with the classical SRC algorithm, apart from providing slightly better
performance, the proposed method is much more robust against global/local data misalignments. In addition, it attains
performance close to the state-of-the-art algorithms at a much lower computational cost, offering a potential solution for real-
time scenarios and large-scale applications.
1 Introduction

Sparse representations have been extensively reported in the
computer vision literature. The idea is that a point y in a
feature space can be appropriately represented by linear
combinations of other points in a ‘dictionary’ A. Such
linear combinations are found by obtaining solutions to
underdetermined systems y =Ax (constrained by some
norm). Finally, inference is done by reconstructing y with
respect to some of the coefficients x and finding the
minimal residuals.
According to the above concept, in the biometrics domain,

the idea is that a sample (image) of a trait (e.g. iris, face) can
be appropriately represented using only elements of the same
class (identity). Hence, the classical sparse representation for
classification (SRC) algorithm concatenates a set of images
with known identity (called the ‘gallery’ elements) in the
dictionary A. Having an image of unknown identity (called
the probe, y), the recognition process is divided into two
phases: (i) the probe is represented by a linear combination
of the dictionary elements and (ii) the probe is
reconstructed with respect to every identity in the gallery,
that is, using exclusively the coefficients x that regard the
corresponding identity. Then, the minimal residual between
the probe and the reconstructed version is deemed to
correspond to the identity of the probe.
Sparse representations are extremely effective in biometric

recognition, provided that: (i) the gallery and probe images
are aligned, to guarantee that the gallery elements constitute
a ‘vector basis’ and (ii) a sufficient number of elements are
included in the dictionary, guaranteeing that the
corresponding system of linear equations is underdetermined
and a sparse solution can be found.
Data misalignments are a major problem in sparse
representations, as illustrated in Fig. 1: images in the upper
row regard the same subject, but are misaligned. On the
contrary, images in the bottom row regard notoriously different
subjects but are accurately aligned. The residual of expressing
one of the images as a linear combination of the other is much
higher in the case of the upper row (same identity) than for the
case in the bottom row (different identities). As this problem
seriously affects sparse representations, it has been considered
in several research works (e.g. [1, 2]).
However, we noted that in all of the methods published,

either the gallery or probe images are explicitly aligned
before the sparse representation, which augments the
computational burden of recognition and turns difficult the
use of sparse representations in large-scale identification
scenarios. This was the main motivation behind this paper:
to provide a simple recognition algorithm based on sparse
representations that is robust to data misalignments, with
two constraints: (i) do not explicitly align either gallery or
probe data and (ii) do not substantially increase the
computational burden of the recognition process.
Our solution cast the problem by evolving four concepts:

‘score fusion, sparse representations, projections’ into
‘orthogonal subspaces’, according to the ‘discriminating
locality preserving’ and ‘maximum margin’ criteria. The
foundations are as follows:

† The Johnson–Lindenstrauss lemma [3] states that points in
a high-dimensional space can be projected into a much
lower-dimensional subspace that preserves a lot of its
structure in terms of inter-point distances and angles.
† Elad and Yavneh [4] observed that ‘a plurality of sparse
representations is better than the sparsest one alone’ and
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Fig. 1 Illustration of the misalignment problem

Even though images in the upper row are from the same subject and have
neutral facial expression, they are misaligned (note the ear at the right band
and the chin)
Residual of expressing y as a function of A (dictionary with a single element)
is larger than in the case of the bottom row that regards notoriously different
subjects
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considered the set of slightly inferior representations more
meaningful than the sparsest. Having merged several
competing representations, they obtained a more accurate
representation of the original signal in the mean-square
error sense.

An empirical evaluation was conducted and the
effectiveness of the proposed solution was compared with
the original SRC algorithm and two alignments methods
because of Pillai et al. [1] and Wagner et al. [2]. Regarding
the data misalignments, two different kinds were
considered: ‘global’ misalignments, as a result of failures in
the detection of the region-of-interest (ROI), and ‘local’
misalignments, because of non-linear deformations in image
patches (e.g. facial expressions).
The remainder of this paper is organised as follows:

Section 2 summarises the most relevant works in terms of
sparse representations in biometrics research. Section 3
provides a description of the proposed method. Section 4
contains the empirical validation procedure that was carried
out. Finally, conclusions are given in Section 5.

2 Related work

This section is divided into two parts: (i) we start by
summarising the most relevant works that use sparse
representations in biometric research and (ii) next, we focus
on the data misalignment problem and describe the major
existing approaches to attenuate such problems. Finally, we
highlight the key distinguishing point between such
approaches and the work described in this paper.

2.1 Sparse representations in biometrics research

SRC-based algorithms have been argued as a relevant
advance to the field of biometrics research, particularly
since the pioneering approach of Wright et al. [5]. The idea
is to concatenate a set of gallery images into a ‘dictionary’
A =. [v11, . . . , vin] (vij is the jth image from the ith
subject). Then, any probe y of unknown identity is
represented as a linear combination in terms of A, that is,
y =Ax, x being the coefficients of that linear combination.
The identity corresponding to y is found based on how well
the x coefficients associated with each known identity
reproduce y. Let ŷi = Adi(x̂i) be the reconstruction of y
2
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using only coefficients from the ith identity (δi is a
characteristic function). By obtaining the residuals of each
identity ri = ||y− Adi( x̂1 )||2, the minimal ri corresponds to
the identity of y.
Patel [6] addressed the lighting and pose factors for

unconstrained face recognition, having used a relighting
approach based on the albedo estimation. The K-means
singular value decomposition (K-SVD) algorithm was used
to learn the dictionaries that best represent training data. The
approximation vectors for each dictionary were found and
the minimal reconstruction error among all dictionaries
provided the identity for a probe. Buyssens and Revenu [7]
fused at the decision level the rankings from sparse
representations on multispectral data. A two-phase sparse
representation was proposed by Guo [8] for the palmprint
recognition problem. They selected a subset of the identities
that more closely reconstruct the probe and obtained a
second sparse representation for these elements.
Classification resulted from the minimal reconstruction error
on the latter phase. In the scope of ear recognition,
Khorsandi et al. [9] used Gabor kernels for feature encoding
before the sparse representation. Gong et al. [10] analysed
spatiotemporal human gait signals by sparse representations,
obtaining recognition performance comparable with
state-of-the-art approaches and with higher robustness to
clothing. Aiming at recognising irises in uncontrolled setups,
Kumar et al. [11] used sparse representations of local
patches of the iris described by the Radon transform,
realigned in different ways to increase the robustness to
segmentation errors. Wong et al. [12] argued that the sparse
representation and classification algorithm is not applicable
to verification problems, and proposed a model based on the
‘bag-of-words’. This model regards images as sets of local
patches and encodes each one by sparse representations.
Concatenated coefficients feed a neural network that gives
the binary response in case of verification problems.
2.2 Handling data misalignments in sparse
representations

As above stated, SRC-based algorithms are particularly
effective, provided that gallery and probe elements are
minimally aligned, to guarantee that any query image can
be appropriately represented by a linear combination of the
gallery elements, that is, the dictionary is a vector basis.
This problem was previously studied in the literature, and
we divide the previously published techniques to
compensate for data misalignments into two families: (i) the
first one assumes that all gallery images are aligned and
explicitly aligns probes, which augments the requirements
about the quality of the training data and (ii) the other
family does not have any alignment constraint and for every
recognition attempt, aligns both the gallery and probe
elements, which is practically impossible for large-scale
applications, where dictionaries contain a large number of
identities.
Pillai et al. [1] started by estimating the best alignments for

the probe according to matched filters and obtained the final
recognition score from a Bayesian fusion framework. For a
probe y, a set of filters with impulse response equal to
shifted versions of y is built, resulting in the matrix
H =. [ ŷ1 , . . . , ŷt ]. Next, the distances between ŷ and the
dictionary elements are obtained, that is, e = || ŷi −v j, k ||2,
∀j, k, i. The alignment error associated with the ith shifted
version is given by
IET Comput. Vis., pp. 1–10
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ei = min

k, j
ei, j, k , ∀j, k

ei,j,k being the residual between the ith alignment and the jth
image of class k. The lowest values of ei are considered the
best possible alignments and the corresponding versions of
y used in the matching phase. Next, the output class is
deemed to correspond to the maximum accumulated score
for all shifted versions of y.
Wagner et al. [2] considered that probes are warped by

some transformation t∈ T, T being a finite-dimensional
group of transformations in the image domain, that is, y =
y0°t. Hence, y is not supposed to have a sparse
representation of the form Ax + e0. In this case, it is more
appropriate to seek the best alignment of y with respect to
each subject

t̂ i = arg min
x, e, ti

||e||1, subj. to y ◦ ti = Aix+ e (1)

Ai being the gallery data of the ith subject. A sequential
ℓ1-minimisation schema is adopted, starting by an initial
guess of the two-dimensional (2D) similarity transform ti
provided by the face detector algorithm. Then, the estimate
is refined by repeatedly linearising about ti, seeking
representations of the form

y ◦ t+ JDr = Aix+ e (2)

where J = (∂/∂r)y + °t is the Jacobian of y°t with respect to
the transformation parameters and Δr is the step. They seek
for a deformation step Δr that most sparsifies the residual e

Dr̂1
= arg min

x, e,Dr
||e||1subj. to y ◦ t+ JDr = Aix+ e (3)

Authors regard (3) as a generalised Gauss–Newton method
for minimising the composition of the ℓ1-norm with a
differentiable mapping from transformation parameters to
the transformed images [13].
Huang et al. [14] assumed that a set of aligned training data

is available. For a misaligned probe y, they proposed to
represent it in terms of the training images I and of their
derivatives

y =
∑
j

aj Ij + a1
∂Ij
∂x

+ a2
∂Ij
∂y

( )
(4)

being (a1, a2) the translation parameters (other 2D similarity
transforms apply similarly). This generates a linear model B
with three times the initial number of images in the training
set. A random projection is used to reduce dimensionality
and the sparsest solution in this space derived, that is,
x0 = argmin ||x||1, subj. to ||y∗ − B∗x||2 , e, where y*
and B* are the representations in the space of reduced
dimensionality. Next, the sparse solution x0 is divided into
[z0, z1, z2]

T and the z0 considered the aligned projection
target. Based on it, an iterative process finds the parameters
of the 2D transformation that better aligns y to the gallery
samples.
As above described, the state-of-the-art algorithms to

attenuate the data misalignment problem in SRC explicitly
align the data for each recognition attempt, either the
gallery (highest computational cost) or the probe images
(with a smaller cost, but assuming that all gallery images
are aligned). As described in the next section, the key
IET Comput. Vis., pp. 1–10
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distinguishing point of the method in this paper is that no
explicit data alignment is carried out for every recognition
attempt. Instead, by fiddling appropriate (and cheap)
projections, the data misalignments can be compensated for in
a way that is almost as effective as that attained by state-of-
the-art techniques, at a much smaller computational cost.

3 Proposed method

We start by finding a set of orthogonal projections into
subspaces. Then, each projection is optimised according to
the locality preserving and maximum margin criteria, which
is particularly attractive for biometric recognition purposes.
Elements are projected into each subspace and sparse
representations obtained independently in each one. At the
end, results are fused at the score level, yielding the final
response.

3.1 Random projections

As a result of the Johnson and Lindenstrauss lemma [3], it is
known that a set of points in a high-dimensional Euclidean
space can be embedded into a lower-dimensional space, so
that all pairwise distances are maintained within an
arbitrarily small factor. Over the years, the classical
algorithms to perform such reduction in dimensionality
project the input data onto a spherically random hyperplane
through the origin, which amounts to multiply the input
data with a dense matrix of real numbers. This might be a
non-trivial task for many practical scenarios in terms of
computational burden.
One of the main contributions from Achlioptas [15] is that

such projections into spherically random hyperplanes can be
replaced by much simpler operations (multiplication by
random vectors, built with step functions), without
significant loss in the quality of embedding. Hence, we
decided to use sparse random vectors based in these
extremely simple step functions, which are computationally
cheap to generate.
Let m be the dimension of the image feature space and d the

dimension of subspaces. A set of d linearly independent
vectors {vi}, vi [ Rm is generated, that is,

∑
i civi = 0 ⇒

ci = 0. Let U � U(0, 1) be a random variable that follows
a uniform distribution. The jth coordinate of a random
vector is given by

v(j) =
1, if u(j) ≤ 1

3

−1, if u(j) ≥ 2

3
0, otherwise

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u( j ) being a realisation of U. In our case, the problem of
generating d linearly independent vectors was tackled
iteratively: at the ith iteration (1≤ i≤ d ), the random vector
vi was added to set B if it is linearly independent of all its
elements, that is, Bi = [Bi−1, vi] if rank([Bi−1, vi]

T) = i, being
B0 = Ø.

3.2 Orthogonal subspaces projections

The idea of an ‘orthogonal projection’ of y [ Rm into an
element in Rd , d≤ n, is to find a projected vector y∗ [ Rd

orthogonal to all basis elements vi, that is, y − y*⊥vi. Let
{v1, …, vd} be a set of linearly independent column vectors,
3
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yi [ Rn and B = [v1, …, vd] be an n × d matrix that results
from the column-wise concatenation of vectors vi. y* can be
expressed as a linear combination of basis elements vi

y∗ =
∑
i

civi = B[c1, . . . , cd]
T (5)

being c = [c1, …, cd]
T. As BT(y − y*) = 0, BTy =BTy*.

From (5), BTy =BTBc and under algebraic manipulation
yields

B(BTB)−1BTy = Bc (6)

As y* =Bc, P = B(BTB)−1BTy is the projection matrix and
maps any vector y [ Rm to its orthogonal projection
y∗ [ Rd .

3.3 Subspaces optimisation

Having a set of t projections {P1, . . . , Pt}, Pi = {p(1)i ,
. . . , p(m)i }, pi [ Rd , an optimisation step was carried out to
maximise the ratio between the ‘between-class’ scatter and
the ‘within-class’ scatter, obtaining as many separate
representations of each class (subject) as possible in each
subspace. The idea of ‘interesting’ projections came from
Friedman and Tukey [16] who attempted to find projections
that preserve clusters, linear structures or outliers. In our
case, this phase was tackled according to the idea of Lu
et al. [17], using two criteria: discriminant locality
preserving projections (DLPP) and maximum margin
criterion (MMC). For a projection Pi, DLPP maximises the
objective function

J (Pi) =
PT
i FHFT Pi

PT
i XLXT Pi

(7)
Fig. 2 SRC for misaligned data

4
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where L =D − W and H = E − B are Laplacian matrices,
being W the ‘within-class’ weight matrix, W (c)

i, j =
exp(−||v(c)i − v(c)j ||2/s2), W = diag(W (c)), B the ‘between-
class’ weight matrix Bi, j = exp (−||�v(i) −�v(j) ||2/s2), E is a
diagonal matrix which elements are column sum of B and
�v(i) is the mean of the ith class. The transformation that
maximises (7) is given by the generalised eigenvalues
problem

(FHFT)ai = li(XLXT )ai, li ≥ li+1 (8)

Furthermore, in order to obtain the MMC discriminant, the
‘between-class scatter’ Sb and the ‘within-class scatter’ Sw
matrices are obtained

Sb =
1

n

∑c
i=1

ni �v
(i) −�v( )

�v(i) −�v
( )T

Sw = 1

n

∑c
i=1

∑ni
j=1

v(i)j − �v(i)
( )

v(i)j − �v(i)
( )T (9)

where �v denotes the mean vector of elements in the dictionary
and ni is the number of elements in the ith class. According to
the Fisher criterion, the objective function is used

J (Pi) = tr(PT
i (Sb − aSw)Pi) (10)

α being a balancing weight. The optimal projection
corresponds to the eigenvectors ai associated to the largest
eigenvalues

(Sb − aSw)aj = ljaj, lj ≥ l j+1 (11)
IET Comput. Vis., pp. 1–10
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Fig. 3 Key insight into the method proposed in this paper: having
two misaligned samples represented in a space of high
dimensionality m, for some interesting projections in subspaces of
dimension d(d ≪ m), misalignments are not so evident

Hence, samples are represented in these subspaces and sparse representations
are obtained
Finally, results are fused at the score level

www.ietdl.org
3.4 Fusion of representations

Let P∗
s denote the sth projection optimised by the DLPP/

MMC criteria. In our algorithm, gallery and probe data are
projected into each subspace, that is, A∗

s = P∗
sA and

y∗s = P∗
s y. Let r(i)s be the residual of the sth sparse

representation for the ith class ωi, given a probe y. Using
the theoretical framework developed by Kittler et al. [18],
all combinations of the responses given by sparse
representations were tested according to the fusion rules:
product, sum, min, max and median. Without any
assumption of the prior probabilities, the posterior
probability that a residual error r(i) belongs to class wj was
obtained by

p(vj|r(i)s ) = p(r(i)s |vj)∑
k p(r

(i)
s |vk )

(12)

k being the number of classes. The density p(r(i)s |vj) was
estimated by kernel-based density methods [19]. Class wc

was assumed if wc = argjmaxf p(wj|r
(i)), where f denotes
Fig. 4 Area under curve values obtained with respect to different
rules used to fuse scores

Results regard the projection into ten orthogonal subspaces of dimension
0.98 ×m, m being the dimension of the image feature space (m = 90 for
10 × 9 images)
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the combination rule. Algorithm 1 (see Fig. 2) gives a
cohesive perspective of the complete recognition process.
Fig. 3 gives the rationale behind the proposed algorithm

and Fig. 4 illustrates the residual effect of the different
fusion rules in performance, as given by the area under
curve (AUC) values. These results regard the fusion at the
score level, using ten subspaces of dimension 0.98 ×m,
being m the dimension of the image feature space (images
have 10 × 9 pixels, m = 90). This stability in performance
was regarded as a positive indicator of the consistency of
the proposed method, and allowed to conclude about a
minimal dependence of the chosen fusion rule.

4 Results and discussion

Our experiments were conducted in two phases: at first, to
validate our implementation and provide a comprehensible
comparison term in terms of performance, effectiveness was
tested in the AR dataset [20] that is widely used in face
recognition experiments. Next, the FaceUBI dataset was
used, whose annotation meta-data particularly fits our
purposes and makes the experiments about data
misalignments easier.

4.1 AR dataset

The AR dataset has over 4000 frontal images from 126
subjects, collected in two sessions. The images have white
backgrounds and vary in terms of illumination, facial
expressions and disguises. Similarly to the experiments
described in [5], a set of 100 subjects was selected and 15
frames from each were considered (without occlusions,
sunglasses and disguises). From these, ten frames were
randomly selected for training (dictionary elements) and the
remaining for probe data. Images were converted to
greyscale and ROIs were marked manually, deliberately
without particular alignment concerns, to simulate slight
misalignments in the face detection step. Next, images were
resized to 11 × 8 dimensions, (n = 88, dimension of the
feature space). The left column of Fig. 5 illustrates some
examples of the images in this dataset and of its major
variation factors.
The evaluation protocol was as follows: for a dictionary

with k identities, for each probe y the reconstruction
residuals ri (i∈ {1, …, k}) were obtained, each one using a
δi() function. The software package described in [21] was
used to obtain the sparse representations. Next, all residuals
were concatenated and a threshold acceptance level varied,
obtaining a receiver operating characteristic (ROC) curve,
which in our viewpoint carries much more information
about the performance levels of the system than the
recognition rate plots given in similar works. The results are
summarised in the right plot of Fig. 5, and show consistent
increases in performance of the proposed method when
compared with the original sparse representation algorithm.
Experiments were repeated 20 times, by randomly choosing
images to be used in dictionary and probe sets. The median
performance levels are represented by the lines series,
whereas the best and worst performance at each point is
represented by the horizontal bars around each data point.

4.2 FaceUBI dataset

About 4000 facial images were selected from the FaceUBI
dataset, with the corresponding annotation files that
5
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Fig. 5 At left: examples of the AR images used in our experiments

Variations are predominant in lighting and facial expression criteria
Right figure compares the ROC curves obtained by the classical SRC algorithm and the method proposed in this paper

www.ietdl.org
delimitate the facial ROIs. For all these images, it was
confirmed by visual inspection that the ROIs were
coherently defined, that is, all images are aligned. Images
are from 100 subjects, 40 frames per subject (20 frames
from each session). They regard exclusively frontal subjects
and were acquired under varying lighting conditions and in
complex backgrounds. For the purpose of reproducibility of
the results, both the images and annotation data are freely
available [http://www.di.ubi.pt/~hugomcp/SparseAlign].
4.3 Effect of the amounts of training data

In the first level of analysis, we verified the levels of
performance with respect to the amount of gallery data, that
is, to the number of images per subject used in the
dictionary. The experiments were repeated when using 1 to
25 images per subject in the dictionary. In addition, it
should be stressed that gallery and probe data from each
subject always regard different sessions, to minimise the
dependence between training and test data. The obtained
area under curve (AUC) values are given in Fig. 6, where
Fig. 6 Comparison between the AUC values of the recognition
system with respect to the number of images per subject used in
the dictionary

6
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the number of images per subject in the dictionaries appears
in the horizontal axis and the corresponding AUC values in
the vertical axis. For both the classical sparse representation
algorithm and the proposed method, results tend to stabilise
when more than five images were included in the
dictionary. In this experiment, images had 10 × 9 pixels,
thus it was guaranteed that even when using a single image
per subject, the system of linear equations was
underdetermined (100 subjects were used).

4.4 Effect of the number and dimension of
subspaces

It is expected that the number of projections into subspaces
and the dimension of these play important roles in the
performance of the proposed method. Hence, the analysis of
the AUC values with respect to both parameters was carried
out. However, it should be considered that the number of
subspaces should be kept as small as possible, as it
determines the computational burden of the recognition
process in a roughly linearly way, that is, a sparse
representation must be found for each subspace and
recognition attempt. Both parameters were varied in regular
Fig. 7 Effect of the number of subspaces used and of their
dimensions in the recognition effectiveness of the proposed method

IET Comput. Vis., pp. 1–10
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Fig. 8 Illustration of the three kinds of global misalignments
considered

For a region-of-interest (continuous rectangle), translation D(tx , ty), scale Δ(s)

and rotation Δ(θ) transformations of varying magnitude were used

www.ietdl.org
intervals: from 1 to 92 subspaces projections, each one with
dimensions that varied from 0.11 to 0.99 ×m, m being the
dimension of the image feature space (m = 90, for 10 × 9
images). Results are shown in the 3D plot of Fig. 7 and it
is noteworthy to stress the stability of performance when
more than five subspaces were used, each one with
dimension higher than 0.33 ×m. In addition, this analysis
was restricted to subspaces of equal dimension, even
though better performance might be possible to obtain, if
the dimensions of each subspace are allowed to vary
independently.
4.5 Global misalignments in ROI location

As illustrated in Fig. 8, three kinds of misalignments were
simulated, corresponding to translation, scale and rotation
Fig. 10 Summary of the decreases in the decidability index d’ with res

(Δ(tx, ty))= ± {0.02, 0.050.1}d, Δ(s) =±{0.02, 0.050.1}d and Δ(θ) =± π/{40, 2515}

Fig. 9 Comparison between the results observed for the classical algor

Results are given with respect to the magnitude of misalignments D(tx , ty), Δ(s) and

IET Comput. Vis., pp. 1–10
doi: 10.1049/iet-cvi.2014.0039
transforms of the manually defined ROIs. This way, the
corresponding variations in effectiveness of the classical
sparse representation algorithm and of the proposed method
were observed. In addition, to contextualise the results, the
proposals of Pillai et al. [1] and Wagner et al. [2] were
used as comparison terms, selected because of their
relevance in the sparse representation literature.
Fig. 9 provides the ROC curves for the proposed

recognition method (continuous lines) and the classical
sparse representation algorithm (dashed lines), as described
by Wright et al. [5]. Results are shown with respect to
misalignments Δ(.) of increasing magnitude (from right to
left: translation, scale and rotation). The horizontal bars
around each data point denote the performance range
observed, when repeating each experiment 20 times,
randomly choosing the gallery and probe elements.
Fig. 10 summarises the decreases in performance with

respect to the magnitude of misalignments, in comparison
with the techniques proposed by Pillai et al. [1] and
Wagner et al. [2]. Results are given in terms of boxplots of
the decidability of the pattern recognition system

d′ = |mG − mI|������������
1
2(s

2
I + s2

G)
√ (13)

being μG and μI are the means of the ri values for genuine and
impostor comparisons and σG and σI are the standard
deviations. Four groups are shown in each figure, each one
with three boxplots, where the luminance of each box
directly corresponds to the magnitude of misalignments,
that is, the black boxes regard minimal misalignments (Δ(tx, ty)
pect of the magnitude of global misalignments in data

ithm of SRC, and for the method described in this paper

Δ(θ)
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Fig. 11 Examples of the seven types of facial expressions
considered in the analysis of local misalignments, from left to
right: anger, disgust, fear, happy, neutral, sad and surprise

Fig. 13 Variations in performance with respect to the facial
expressions in probe data, when gallery samples are exclusively
neutral (left plot), and when gallery data have different facial
expressions (right plot)

www.ietdl.org
= ± 0.02d, Δ(s) = ± 0.02d and Δ(θ) = ± π/40) (d is the length of
the diagonal of ROIs (≃13.45for 10 × 9 images) and the light
grey boxes give the performance for misalignments of
maximal magnitude (Δ(tx,ty) = ± 0.1d, Δ(s) =±0.02d and Δ(θ)

= ± π/15). The solid horizontal lines express the
performance of the classical sparse representation algorithm
for aligned data. Minimal decreases in performance were
observed for the proposals of Pillai et al. and Wagner et al.,
but in this case it should be stressed that both methods
explicitly align either probes or gallery data, considerably
augmenting the computational burden of the recognition
process. The method of Pillai et al. outperformed for slight
misalignments, but more critically degraded performance
than Wagner et al.’s for more severe misalignments.
Regarding the proposed method, the decreases in
performance were larger than both Pillai and Wagner’s
methods but – with exception to translation misalignments
of large magnitude – the levels of performance remained
consistently above the horizontal black line, that is, even on
misaligned data, results were better than in the classical
sparse representation algorithm for aligned data. In addition,
in every direct comparison with the original algorithm, the
proposed method obtained best performance without
interception of the upper/bottom performance range of both
methods, pointing about the statistical significance of these
results.

4.6 Local misalignments because of facial
expressions

Facial expressions induce misalignments in local image
patches because of the action unit muscles evolved in the
process. As in the case of global misalignments, this factor
was regarded as a covariate and performance compared
with respect to facial expressions in the gallery and probe
data. Fig. 11 illustrates the seven categories considered:
Fig. 12 Effect of facial expressions in recognition performance

Left plot expresses the results for the classical SRC algorithm
Plot at the centre gives the results for the proposed method
Boxplot at the right summarises the variations in performance
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Table 1 Comparison between the average turnaround time (S) of the classical SRC algorithm (sparse representation Column) and of
the method described in this paper

Methods s = 2, m = 0.11 s = 2, m = 0.99 s = 42, m = 0.11 s = 42, m = 0.99 s = 82, m = 0.11 s = 82, m = 0.99

sparse representation (SRC) 0.05 ± 0.001 0.74 ± 0.003 0.05 ± 0.001 0.74 ± 0.003 0.05 ± 0.001 0.74 ± 0.003
proposed method 0.06 ± 0.002 1.05 ± 0.004 0.89 ± 0.030 15.75 ± 0.071 1.79 ± 0.03 31.05 ± 0.096

s Denotes to the number of subspaces used and m is the dimension of each subspace (m × 10 × 9 elements) (FaceUBI dataset).

www.ietdl.org
‘anger’, ‘disgust’, ‘fear’, ‘happy’, ‘neutral’, ‘sad’ and
‘surprise’. In this experiment, three variants were
considered: (i) only neutral images were considered; (ii)
gallery samples were exclusively neutral and probes had
different expressions; and (iii) both gallery and probes
samples might have any facial expression.
Results are summarised in Fig. 12 and do not show a

relevant effect of expressions in performance, both for the
classical sparse representation algorithm and ours method.
This accords with previous reported results (e.g. [5]) and
confirms the remarkable ability of sparse representations to
handle non-linear deformations in images patches, because
of occlusions, disguises or facial expressions. The AUC
values shown at the rightmost plot confirm the minimal
decreases in performance with respect to this factor, where
the black boxes represent the ‘neutral↔ neutral’ results, and
the remaining boxes represent the ‘neutral↔ any’ and
‘any↔ any’ results.
Finally, to perceive the effect of each type of facial

expression, experiments were repeated for each facial
expression in an isolated way. Results are given in the radar
charts of Fig. 13, where spokes represent facial expressions.
The length of each spoke corresponds to the AUC value
observed for that expression. The upper chart gives the
results when matching probes of different expressions
against exclusively neutral dictionary images, whereas the
bottom chart expresses the results when both probes and
gallery data have the same facial expression. In the case of
neutral↔ X, anger was observed to be the most problematic
facial expression, whereas ‘sad’ and ‘fear’ almost did not
affect the results. When matching data of the same
expression, best results were observed for the ‘disgust’
and ‘sad’ expressions, both of them yielding better results
than in ‘neutral’ data. These variations were consistent
for both the classical sparse representation algorithm and
our proposal.
As a summary, it can be concluded that the proposed

method consistently outperformed the classical sparse
representation and classification algorithm, at expenses of a
slight increase in the computational burden of the
recognition process. In addition, the proposed method is
more tolerant to misalignments in the ROIs than the
classical algorithm. Regarding this factor, it attains
performance comparable with state-of-the-art alignment
techniques for sparse representations, at a far lower
computational burden for every recognition attempt.

4.7 Comparison of turnaround times

To contextualise the computational cost of the algorithm
proposed in this paper, we compared the average
turnaround times for a query (recognition attempt),
according to the SRC algorithm and our proposal. Our
method starts by obtaining a set of s subspaces according to
the DLPP/MMC projection pursuit algorithm. However in
practical terms, this phase runs only once during the system
IET Comput. Vis., pp. 1–10
doi: 10.1049/iet-cvi.2014.0039
initialisation, and it was neglected from the comparison.
Then, for both the SRC and our method, the most
significant cost of recognition depends on the algorithm that
solves the underdetermined systems of linear equations. As
stated above, the software package described in [21] was
always used for that purpose.
Results are given in Table 1, for different number of

subspaces s and two different levels of subspaces dimension
m = 0.11 and 0.99 (feature spaces with dimension m × 10 ×
9, as described in Section 4.4).
The number of elements in the dictionary was kept constant

(ten elements per identity), as it is known that the time
complexity of the algorithm that solves the system of linear
equations is quadratic with respect to this parameter. To
obtain an approximate confidence interval, the experiments
were repeated 20 times, each iteration selecting a random
sample of the data for the dictionary and using the
remaining part as probes.
In summary, we observed that the turnaround time of our

proposal is slightly higher than for the SRC algorithm, and
varies in a roughly linear way with respect to the number of
subspaces used. In addition, both the proposed method and
the SRC slightly augment the turnaround times with respect
to the parameter m. Even though the immediate comparison
between the turnaround times might lead to conclusions
about a significant higher computational cost of our
proposal, it should be stressed that projecting the input data
into independent subspaces and solving the corresponding
systems of linear equations are easily parallelisable tasks, in
case of system deployment. Hence, the differences of
values with respect to the parameter s are easily reduced by
parallel computing architectures. The important parameter
here is m, where the differences in the average turnaround
time of our method were similar to those observed for the
SRC.

5 Conclusions

Sparse representations are a relevant advance on the
biometrics field: they faithfully address data occlusions and
different sources of noise, provided that a sufficient number
of samples per class exist. However, a key requirement is
that elements in the dictionary constitute a vector basis,
which enforces that they should be aligned. Various
algorithms were proposed to compensate for data
misalignments, that attain remarkable effectiveness but
either explicitly align the probes (assuming aligned gallery
images) or even all gallery images (in case of unconstrained
setups, maximum computational cost). This step
considerably augments the computational burden of the
recognition process, making its application in real-time or
large-scale scenarios difficult.
The main goal of this paper is to provide a simple way to

improve the robustness of sparse representations in case of
misaligned data, without explicitly aligning either gallery or
probe images. A method based in random projections into
9
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orthogonal subspaces is used to alleviate the effect of data
misalignments. Each projection is optimised according to
the discriminating locality preserving and maximum margin
criteria. Sparse representations are obtained in these
subspaces and the final response yields from fusion at the
score level of the response from each subspace. When
compared with the classical sparse representation algorithm,
the empirical results point out consistent improvements in
performance. In addition, with respect to the state-of-the-art
techniques that compensate for data misalignments in sparse
representations, similar performance was observed for slight
to moderate misalignments, at a far lower computational
cost in the recognition process.
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