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Fake It Till You Recognize It: Quality Assessment
for Human Action Generative Models

Bruno Degardin , Vasco Lopes , and Hugo Proença , Senior Member, IEEE

Abstract—Skeleton-based generative modelling is an important
research topic to mitigate the heavy annotation process. In this
work, we explore the impact of synthetic data on skeleton-
based action recognition alongside its evaluation methods for
more precise quality extraction. We propose a novel iterative
weakly-supervised learning generative strategy for synthesising
high-quality human actions. We combine conditional generative
models with Bayesian classifiers to select the highest-quality
samples. As an essential factor, we designed a discriminator
network that, together with a Bayesian classifier relies on the
most realistic instances to augment the amount of data available
for the next iteration without requiring standard cumbersome
annotation processes. Additionally, as a key contribution to
assessing the quality of samples, we propose a novel measure
based on human kinematics instead of employing commonly used
evaluation methods, which are heavily based on images. The
rationale is to capture the intrinsic characteristics of human
skeleton dynamics, thereby complementing model comparison
and alleviating the need to manually select the best samples.
Experiments were carried out over four benchmarks of two
well-known datasets (NTU RGB+D and NTU-120 RGB+D),
where both our framework and model assessment can notably
enhance skeleton-based action recognition and generation models
by synthesising high-quality and realistic human actions.

Index Terms—Weakly-supervised learning, self-supervised
learning, graph convolutional networks, generative adversarial
networks, skeleton-based action recognition.

I. INTRODUCTION

HUMAN behaviour analysis through skeleton-based data
has been a crucial area of research for many years [10],
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Fig. 1. Weakly-supervised Strategy. The proposed method builds upon
a weakly supervised discriminator network that distinguishes between well
and poorly-generated skeleton sequences. The results of this network are then
fed into a Bayesian classification module, which selects the most confidently
classified instances from an unsupervised set. These elements are consistently
used as input for an action recognition model in an iterative and self-
supervised way.

[40], [44], [56], [60]. The emergence of deep learning
techniques sparked a growing interest in the field, particu-
larly due to the remarkable robustness of skeleton data in
dealing with dynamic circumstances, variations, and cluttered
backgrounds. Nevertheless, the performance of data-driven
approaches is heavily dependent on the amount of learning
data available, which is where synthetic data generation comes
in as a solution to address the problem of limited data.

One of the biggest impediments to future research is the
lack of quantitative evaluation methods to assess the quality
of trained models accurately. Current methods to generate
synthetic human actions have several limitations considering
the global movement [5], [53], [55], [58], restricted abil-
ity to control the synthesised actions [21], [50], [53], [58]
and the generation of high-quality samples. The latter still
requires considerable human confirmation to generate the
best samples, mainly due to the conventional evaluation
metrics being originally proposed for image-based generative
models [22], [39], [47]. Commonly used evaluation methods
for human action synthesis, such as the Fréchet Inception
Distance (FID) [22], where the Inception network [48] is
often replaced with a skeleton-based classifier, correlate well
with the perceived quality of samples and are quite sen-
sitive to mode dropping [34], [38]. However, such metrics
cannot distinguish between different failure cases (human
action sequences poorly performed) since they only yield
one-dimensional scores.
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The lack of optimal quality filtration has a consequential
impact on one of the key applications of human action
synthesis: improving human action recognition models through
synthetic data. Data augmentation methods can be broadly
classified into handcrafted and reconstructive approaches.
Handcrafted methods apply 3D transformations [26], [51],
such as rotation, scaling, shear, horizontal flipping [57], and
the addition of Gaussian noise [29]. On the other hand,
reconstructive approaches [49], [54] rely on techniques such as
LSTM and autoregressive methods to generate new sequences
by learning temporal dynamics. However, these techniques
may not capture the action’s overall spatial and temporal view
since they are based on image augmentation techniques. In
contrast, our work focuses on exploiting generative adver-
sarial and graph convolutional networks to overcome these
limitations and capture both the data’s structural and temporal
aspects.

This work extends the use of Graph Convolutional-based
GANs to improve skeleton-based human action recogni-
tion. We leverage the advantages of both GANs and Graph
Convolutional Networks (GCNs) to overcome the limitations
of current methods. Furthermore, in order to enhance the
overall performance, we derive a novel notion of assessing
synthetic data, where we filter the best samples by leverag-
ing human kinematics principles related to the velocity and
acceleration of human skeleton actions, explicitly focusing
on metrics such as JERK and JITTER. Additionally, we
further adopt an iterative learning strategy based on a weakly-
supervised paradigm, where we generate conditioned human
action sequences by considering the quality of the human
structure and action motion. Our approach facilitates the
generation of high-quality human action sequences, resulting
in improved action recognition performance. This is achieved
without the need for manual labeling. Notably, our method
enables the automatic selection of the best-quality samples,
independently from the real data.

In conclusion, this work provides several advancements:
1) the use of a scalable weakly-supervised learning dis-
criminator framework for conditioning and filtering synthetic
data to enhance human action recognition models, 2) the
ability to extend the architecture to a conditional model,
capable of generating a wide range of actions (up to 120
different classes), 3) a novel methodology that evaluates
human generative models based on the intrinsic characteristics
of the data, and 4) an extensive evaluation of the proposed
work on four benchmarks from prominent datasets: NTU
RGB+D [42] and NTU-120 RGB+D [30], demonstrating
significant improvements over the state-of-the-art across action
synthesis and action recognition.

II. RELATED WORK

A. Skeleton-Based Behaviour Analysis

One promising cue for human behavior analysis is body
pose estimation. By representing human dynamics in the form
of body poses, the information extracted is semantically rich
and highly descriptive, which allows reducing the impact of
appearance noise that is commonly present in RGB and depth

data. Thus, allowing the learning process to focus solely on
human behavior.

In the past decade, skeleton-based behavior analysis has
evolved significantly. This progression has ranged from using
pseudo-images with CNNs [25], [33], [46] and sequence coor-
dinate vectors with RNNs [15], [31], [32], [45], [59] to the
recent adoption of GCNs [7], [8], [9], [11], [12], [44], [56],
[60]. The employment of GCNs models skeleton data as
spatiotemporal graphs, providing more effective capture of
underlying structural information.

B. Human Action Synthesis

Skeleton-based human action synthesis can be categorized
into two main approaches: autoregressive and generative
methods. Autoregressive methods [16], [61] utilize Recurrent
Neural Networks (RNNs) to model actions by considering
skeleton data as a sequential vector of multiple frames. In
contrast, generative methods leverage Generative Adversarial
Networks (GANs) [18] to produce a full-body skeleton
sequence from the latent space. Generative models address
the problems of suboptimal extraction of structural body
information and limited scalability in terms of bidirectional
temporal dependency by generating synthetic data from the
latent space. However, some generative methods still rely
on autoregressive techniques [28], [53], [58] and Gaussian
processes [55] to solve long-term relationships in the latent
space and use manually structured vector sequences to
model skeleton data, which can limit their scalability for
action conditioning. To overcome these limitations, recent
approaches [13], [20] leverage the properties of GANs and
GCNs to enable effective and scalable action conditioning.

C. Evaluation of Skeleton Generative Models

Both classic and recent approaches in the field have
traditionally relied on assessing the likelihood or statis-
tical divergence of the entire set of synthetic samples
when compared to the real dataset. Most evaluation metrics
used to evaluate the quality of skeleton-based data are re-
appropriations of metrics originally proposed for image data.
Examples include the Inception Score (IS) [39] and Fréchet
Inception Distance (FID) [22]. The IS provides a quantitative
evaluation of the quality of generated samples within the
data context. It measures the balance between the conditional
label distribution p(y|x) and the label distribution over the
entire dataset p(y). The conditional label distribution p(y|x)
indicates the meaningful information contained in the samples
and should have low entropy, while the label distribution p(y)
should exhibit high entropy. As the score relies on a classifier,
it requires a labelled dataset, which has been observed to be
insufficient in providing reliable guidance for model compar-
ison [2]. In the opposite spectrum, the FID is proposed as an
alternative approach that does not require labelled data. The
samples are embedded in a feature space, typically using a
spatiotemporal graph convolution network, and then fitted with
a continuous multivariate Gaussian distribution. Finally, the
distance is computed as FID(x, g) = ‖μx − μg‖2

2 + Tr(�x +
�g −2(�x�g)

1
2 ), where μ and � are the mean and covariance
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Fig. 2. Illustrative Overview of the Weakly-supervised Learning Discriminator Strategy. First, we generate a weakly-supervised set using existing
generative methods like Kinetic-GAN [13], CSGN [55], or cGAN [36], and annotate a small set of generated samples as good or bad based on quality. Next,
we train a Graph Convolutional Network to distinguish between well-executed and poorly executed skeletons and use its output scores to filter out unreliable
instances from an unlabelled dataset. Then, we combine the discriminator with a Bayesian classifier to identify the most reliably classified samples, which are
fed into an action recognition model. The selected samples are also used to train the discriminator in the next iteration, thereby improving the framework’s
overall performance.

of the corresponding samples, respectively. Additional metrics,
such as the maximum mean discrepancy (MMD) [47], are
also commonly employed in human action synthesis for
comparing features of two sets of data. In addition to their
dependency on real data for comparison, these metrics also
have a limitation in their ability to provide detailed, sample-
level quality estimation. As distribution-based metrics, they
cannot capture detailed information at the individual sample
level.

This paper introduces an alternative and complementary
evaluation metric. It aims to not only analyze the individual
quality of samples but also move towards assessing the contex-
tual quality of generated samples and their intended purpose.
An additional advantage of this metric lies in its independence
from real data, saving both labeling time and enabling direct
application to generated data for low-computational-cost data
augmentation.

III. ITERATIVE WEAKLY-SUPERVISED LEARNING

GENERATIVE FRAMEWORK

A. Weakly-Supervised Discriminator Network

Graph Convolutional Networks (GCNs) allow the extraction
of embedded patterns over spatial and temporal axes of a
skeleton sequence. This is accomplished by generalizing con-
volution operations (mainly used for images) to graphs. Based
on this approach, we use a Spatiotemporal GCN discriminator
as our quality network to extract quality patterns of a skeleton
action (Fig. 3).

Graph Convolutional Networks (GCNs) leverage a spa-
tiotemporal graph Gl = (V l,E l) to represent skeleton data
with Nl joints and Tl frames, where L is the number of levels
of the skeleton graph resolution and l = {1, . . . ,L}. In this
context, the feature map of the skeleton sequence can be
represented by Xl ∈ R

Nl×Tl×C, where C is the number of
channels that represent joint coordinates at resolution level l. A

Fig. 3. Discriminator. The discriminator takes as input a skeleton graph
sequence Gl, along with its embedded class (achieved through channel-
wise concatenation), and learns to discriminate by coarsening spatially and
temporally from level l to 0. This downsampling process results in a more
efficient and effective discrimination process, enabling our model to better
filter out low-quality samples.

GCN comprises both spatial and temporal graph convolutions.
In the spatial dimension, the intra-body joint connections are
typically defined using an adjacency matrix Al ∈ {0, 1}Nl×Nl

and the corresponding identity matrix Il. These matrices are
used to regulate the receptive fields of the convolution. To
enable the construction of convolution operations, a partition-
ing strategy is defined to represent the neighbor set of each
joint due to the high-level formulation of the problem. In this
context, Al and Il are dismantled into three partitions p, based
on the spatial configuration proposed by [56]. Thus, we have
Al + Il = ∑

p Alp . Given that multiple graph convolutional
layers are used, each layer may contain different levels of
semantic information [44], [56]. The problem with this is that
simply using Al forces the same pre-defined spatial weight for
all layers. Therefore, we introduce a learnable weight matrix
Ml ∈ R

Nl×Nl , initialized as an all-one matrix. For each layer of
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the generator and discriminator. This enables us to adaptively
optimize the spatial weight configuration of Al, and compute
the graph convolution as follows:

S(Xl) =
p∑

i=1

�
− 1

2
li

(
Ali � Ml

)
�

− 1
2

li
XlWli , (1)

where the normalization of the adjacency matrix Alp is

achieved through the degree matrix �ii
lp

= ∑
j(A

ij
lp
), which

represents the summation of edges attached to each joint node.
The weight vectors for each partition group p from resolution
level l are stacked and represented by Wlp .

Over the temporal axis, we propose the use of consecutive
frames as consecutive skeletons to leverage one-dimensional
kernels in temporal graph convolution. This operation is
applied after the spatial graph convolution. Finally, the spa-
tiotemporal graph convolution is computed by convolving the
positional features joint-wise, as T

(
S(Xl)

) = S(Xl) ∗ wl,
where wl ∈ R

1×t×C is the temporal kernel at resolution l with
t as the number of frames to be convolved in the kernel. By
computing the spatiotemporal graph convolution at every level
l of the discriminator, we can inherently capture the temporal
evolution of joint positions and connections over time, thus
producing a sequential spatiotemporal representation of the
action. Extracting spatiotemporal features from a complete
action X = 〈x1, x2, . . . , xn〉 enables capturing quality patterns
without losing any spatial or temporal dependencies. These
features allow a direct analysis of the spatiotemporal evolution
of joint positions and connections over time and guide the
learning process of the discriminator with a binary cross-
entropy loss.

B. Bayesian Classifier

The proposed weakly-supervised discriminator network
adopts a Multiple Instance Learning (MIL) paradigm, treat-
ing input skeleton sequences as bags labeled in a binary
fashion. Here, good bags represent well-structured skeletons
executing accurate actions, while bad bags denote poorly
structured and executed ones. To delve into the theoretical
underpinnings, our approach aligns with weakly supervised
learning principles, where bag-level annotations guide the
discriminator network. Furthermore, self-supervised learning
elements are inherently present, as the iterative generation
strategy refines the model through its own generated data,
contributing to a more comprehensive understanding of well-
performed skeleton actions. In essence, our method leverages
both weakly supervised learning and self-supervised learning
aspects for more effective action synthesis.

After the initial generation of learning using a small set
of synthesized samples, Bayesian classifiers can be used to
obtain a degree of belief (Fig. 4) for each classified instance
in the unsupervised set. The key idea behind this approach
is to select only instances with an extremely high belief for
the next generation of the learning set. This is accomplished
in a self-supervised manner for both the weakly-supervised
discriminator network (WSDN) and the action recognition
model.

Fig. 4. Comparison between the posteriors P
(
y|f (V i)

)
obtained by the

Bayesian classifier across each generative baseline.

The Bayesian classifier is embedded in our method’s frame-
work to achieve self-supervision by filtering out the actions
that should be used for training the action recognition model
accordingly to the received scores f (G) produced by the
discriminator network:

P
(
y|f (Gi)

) = P
(
f (Gi)|y)P(y)

P
(
f (Gi)

) (2)

where y ∈ {′g′,′ b′} represent the good/bad quality classes. To
approximate the conditional densities P

(
f (Gi)|y), a Gaussian

kernel density estimator with Scott’s rule [41] for bandwidth
selection was used. During our experiments and annotations,
we noticed a balance between good and bad instances with
Kinetic-GAN [13] and CSGN [55]. However, to address the
substantial imbalance between the number of bad instances
and good ones over cGAN [36], the priors were empirically
adjusted to P(′g′) = P(′b′) = 0.5.

Formally, the rule for selecting the i-th skeleton action for
the next generation of the action recognition model learning
data is:

G(t+1) def= {
Gi ⇐⇒ P

(
y|f (Gi)

) ≥ τ1
}
, y ∈ {′g′,′ b′}, (3)

i.e., an unsupervised skeleton action’s prediction score is
selected if its posterior probability for either the ′b′ or ′g′ class
is above a certain threshold.

C. Conditional Generative Adaptation

Generating specific actions is crucial for human action syn-
thesis. However, previous generative models for synthesizing
skeleton actions were not designed to generate controllable
motions. To address this limitation, we adapted state-of-
the-art approaches, including CSGN and a skeleton-based
GAN, to enable greater control over the action generation
process. Specifically, in both generators, we incorporated
the embedded class representation y into the input noise z,
such that the generative process is aware of which action
is being generated [13]. Meanwhile, the discriminators are
fed with the channel-wise concatenation of the skeleton and
the embedded class representation y. In our approach, we
applied the WGAN-GP [19] objective formulation, which is
conditioned as:

min
G

max
D

Discriminator loss
︷ ︸︸ ︷
Ex∼Pr

[
D(x|y)] − Ex̃∼Pg

[
D(x̃|y)]

+λ
Gradient penalty

︷ ︸︸ ︷

Ex̂∼Px̂

[(∥
∥∇x̂D(x̂|y)∥∥2 − 1

)2
]
, (4)
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where Pr is the data distribution and Pg is the model
distribution implicitly defined by x̃ = G(z, y), z ∼ p(z) (the
input z is sampled from a noise distribution p, which is then
concatenated with the embedded action class representation y).
Px̂ is sampled uniformly along straight lines, using linear
interpolation, between pairs of points sampled from the data
distribution Pr and generator distribution Pg. The loss weight
λ for gradient penalty is set to 10 in all experiments.

IV. ASSESSING HUMAN BODY QUALITY

The main idea behind synthetic human actions relies on
capturing the dynamics of the human body’s skeleton. These
are rooted in the understanding of human body physics.
However, existing methods for generating human actions
primarily evaluate their models using Inception Score (IS)
and Frechet Inception Distance (FID). Unlike the conventional
approaches of using Inception-v3 trained with a large dataset
of millions of images (ImageNet), current studies employ an
action classifier trained on a smaller set of several thousand
human actions. Despite the good correlations achieved by
such evaluation metrics, several works have reported multiple
flaws [2], [3], [37], such as misleading results when applying
the classifier on datasets other than ImageNet, also leading
biased gradients when evaluating a reduced number of samples
also leading to misleading results and even single quality
estimation.

In this section, we derive a novel notion of assessing
synthetic human actions based on their physical attributes,
including JERK and JITTER. This assessment method is appli-
cable to unlabeled data and can be conducted independently
of a real distribution. In Section IV-B, we further conduct a
thorough analysis to examine how our evaluation correlates
with the quality of outputs generated by various state-of-the-
art human action generative models compared to traditional
evaluation metrics. Additionally, we validate our approach by
comparing it with human-annotated synthetic samples.

A. Assessing Skeleton Generative Models via Kinematics

An action performed by a human skeleton involves the
coordinated movement of multiple joints, forming a struc-
tured and dynamic representation in both the spatial and
temporal dimensions. The inherent nature of skeleton-based
data facilitates its analysis when compared to images and
videos. This advantage allows us to leverage physics-based
metrics specifically designed for this data type. Subsequently,
we assess the attributes of synthetic samples by analyzing
their velocity, acceleration, JERK, and JITTER. These metrics
provide valuable insights into the dynamic aspects of the
generated actions, allowing for a comprehensive assessment
of their realism and quality. In the context of skeleton
data, we measure how quickly a skeleton G moves over
time (velocity) through 1

N·T
∑N

n=1
∑T

t=1 ‖ dpn(t)
dt ‖ and how the

velocity of a skeleton changes over time (acceleration) through
1

N·T
∑N

n=1
∑T

t=1 ‖ d2pn(t)
dt2

‖, where pn(t) represents the n-th joint
position at time t.

As is often observed in image modelling [4], [17], the
pursuit of higher quality in generated samples can often result

in the appearance of undesirable artifacts. This phenomenon,
which is well-established in the image-based field [24], [52],
holds true for synthetic human actions as well. Artifacts
frequently arise due to the use of normalization methods within
the generator, which enhance training stability by mitigating
covariate shifts. However, the normalization of feature maps
attenuates the information regarding the magnitude of individ-
ual features. It is assumed that the generator amplifies these
magnitudes, which goes unnoticed by the discriminator during
the normalization process [13], [24], [52].

This leads to the generation of synthetic actions that
exhibit unnatural human dynamics, including irregular fluctua-
tions, unstable acceleration, oscillations, and trembling. These
anomalies can be discerned by analyzing the fundamental
principles of human physics. Therefore, we further investigate
the JERK of a skeleton action, which measures the rate of
acceleration changes over time. By quantifying the smoothness
or abruptness of these changes within the skeleton, JERK
provides insights into the overall dynamics of the action, which
is defined as:

jerkoverall(G) = 1

T · N

T∑

t=1

N∑

n=1

∥
∥
∥
∥

d3pn(t)

dt3

∥
∥
∥
∥ (5)

Furthermore, we also analyse the occurrence rate of position
or orientation fluctuations in the skeleton’s joints G over time.
This phenomenon, known as jitter, quantifies the level of
instability or variability exhibited by the joints during the
action, which is defined as:

jitteroverall(G) = 1

T · N

T∑

t=1

N∑

n=1

‖pn(t)− pn(t − 1)‖ (6)

By applying these metrics, we can assess the smoothness
of transitions between various poses or movements within the
skeleton. This is achieved by analysing the continuity and
regularity of joint trajectories and motion sequences, allowing
us to gauge the natural and seamless flow of the skeleton’s
movements. Fig. 5 depicts two generated actions of a person
jumping, where the lower sample (blue, generated by Kinetic-
GAN [13]) exhibits significantly smoother motion compared to
the upper sample (red, generated by cGAN [36]). While both
generative methods effectively model the human structure,
there is a notable disparity in the quality of human dynamics
they produce.

B. Sample Quality Assessment and Analysis

In recent skeleton generative models, generating high-
quality examples among a set of outputs still remains
challenging. Existing state-of-the-art evaluation metrics pri-
marily compare samples from the real and generated
distributions, resulting in a limited emphasis on assessing the
individual quality of samples [1]. Currently, the selection of
the best-generated samples still relies on human confirmation,
indicating a continued dependence on human judgment in the
process.

Hence, we adopt an alternative approach to evaluate gener-
ative models. Rather than assessing the generative distribution
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Fig. 5. Comparing skeleton dynamics smoothness. The difference between
a “jump up” action poorly executed by cGAN [36] (red skeleton action), and
a well executed one from Kientic-GAN [13] (blue skeleton action).

Fig. 6. Individual Quality Metrics Performance. ROC curves comparison
obtained from 10,000 annotated samples with 5,000 high-quality actions and
5,000 low-quality actions.

based on collective measures such as the likelihood or statis-
tical divergence, we individually classify each sample as high
or low quality. In order to validate the effectiveness of our
physics-based metrics in contrast to previous state-of-the-art
evaluation metrics, we conducted an experiment utilising a set
of 10,000 annotated samples from Kinetic-GAN’s synthetic
actions [13]. From this set, we obtained 5,000 well-performed
skeleton actions (annotated as high quality) and an additional
5,000 samples annotated as low quality. Fig. 6 illustrates
a comparison of the ROC curves for current state-of-the-
art evaluation metrics commonly employed in skeleton-based

Fig. 7. “Truncation trick” effect analysis. The FID and JERK (both lower
the better) evolution w.r.t. truncated sampling distributions of the latent space
with both benchmarks of NTU RGB+D [42].

action synthesis, such as FID, IS, and the Maximum Mean
Discrepancy (MMD), along with the physics-based metrics,
JERK and JITTER. Additionally, we trained a multilayer
perceptron using an additional set of 1,000 samples comprising
both low and high-quality actions. The features used for
training were extracted from a conventional spatiotemporal
graph convolution [56]. Given that FID, IS, and MMD are
distance metrics comparing two distributions, we applied a
bootstrapping-like strategy by executing each metric 1,000
times for each sample. We then calculated the average metric
value to assess the quality of each sample.

Furthermore, an analysis of the distribution of training
data reveals that regions with low density are noticeably
underrepresented, making it challenging for the generator to
learn how to accurately model such areas. As established in
prior studies [4], [23], [27], [35], the quality of generated
samples can be enhanced by utilising truncated or shrunken
sampling distributions. Despite potential losses in variation, we
adopt a similar approach to analyse the behaviour of physics-
based metrics using Kinetic-GAN mapping network [13].
During the inference phase, we calculate the scaling factor for
the deviation of a given intermediate latent point w from the
center of mass of W using the following expression:

w′ = Ez∼Pz

[
f (z)

] + ψ
(
w − Ez∼Pz

[
f (z)

])
, (7)

where ψ ≤ 1, f (·) denotes the projected latent space, and Pz
is the latent space distribution from 1,000 points. As shown
in Fig. 7, it is evident that the quality of generation can be
enhanced by observing the JERK of truncated synthetic sam-
ples as the shrinking factor ψ increases, which is consistent
with the findings of prior studies [4], [23], [24]. In contrast to
the FID, this observation further validates our findings regard-
ing the individual quality of samples. Specifically, we observe
that as the threshold ψ decreases to ≤ 0.9, the variation begins
to diminish, consequently leading to a significant increase in
FID scores. It is worth noting that conducting an experiment
that combines both metrics can serve as a valuable starting
point for selecting the best-quality samples and parameters.

V. EXPERIMENTS AND DISCUSSION

A. Datasets and Experimental Settings

NTU RGB+D [42]. The dataset comprises 56,880 videos
that belong to 60 action classes. For each sample, 3D skeleton
data captured from 25 joints of 40 volunteers is provided.
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Fig. 8. Accuracy evolution on NTU RGB+D [42]. The first result of each
line corresponds to the accuracy obtained using only real data, followed by
the accuracy obtained after adding 2,500 and 5,000 synthetic samples in each
experiment. The mean accuracy over five experimental runs (including real
data) is reported.

The authors suggest two benchmarks for evaluating models:
1) cross-subject, where models are tested on other subjects
than the ones they were trained on, and 2) cross-view, where
models are tested on different camera views than the ones they
were trained on..

NTU-120 RGB+D [30]. The dataset is an expanded
iteration of its previous version, encompassing 114,480 video
samples that are categorized into 120 action classes. The
videos were captured using three camera views in 32 distinct
setups, with data collected from 106 volunteers and 25 body
joints per skeleton. The authors suggested two benchmarks for
evaluation: 1) cross-subject, where models are tested on other
subjects than the ones they were trained on, and 2) cross-setup,
where models are tested on different setups than the ones they
were trained on.

B. Performance Evolution

To validate the effectiveness of combining synthetic skele-
ton actions with real training data, we conducted an experiment
using 10,000 samples from Kinetic-GAN’s synthetic data [13].
From these, we obtained 5 thousand well-performed skeleton
actions and added them to multiple training sets of varying
sizes to observe their impact on accuracy. The accuracy
evolution was plotted, starting from using only synthetic data
with no real samples included, up to 40,000 real skeleton
actions combined with 5,000 synthetic samples. Fig. 8 shows
the results of this experiment using spatiotemporal graph
convolutional network (ST-GCN) as the recognition model,
where the same 5,000 synthetic samples are used across all
training sets. The same real samples are also included in each
subsequent training set.

Based on our experiment using Kinetic-GAN’s synthetic
data [13], we observed that the improvement in action recog-
nition performance is greater when the real training set size
is smaller. However, even with a larger training set of 40
thousand real skeleton samples, we still achieved a significant
performance gain of 2.8% (3.4% p.p.). This suggests that
synthetic data can be a valuable addition to real training data,
even when the real data set is relatively large.

Fig. 9. JERK vs. FID vs. Accuracy on NTU RGB+D [42]. The graph
shows the relationship between accuracy, FID and JERK metrics (both lower
the better) for each increasing set size, except for the case where only real
data is used.

TABLE I
EVALUATING DIFFERENT GENERATOR DESIGNS. THE FID, MMD

AND JERK SCORES (LOWER IS BETTER) BETWEEN REAL

AND SYNTHETIC SAMPLES GENERATED

Furthermore, we analyse the recognition accuracy in relation
to the FID and JERK metrics. Fig. 9 depicts that the closer the
convergence is (lower the FID and JERK values), the better
the accuracy as more diverse characteristics of the skeletons
(FID) are generated in the synthetic data, while containing
more well-performed (JERK) action samples.

C. Ablation Study and Weakly-Supervised Experiments

In this section, we demonstrate the experimental
improvements achieved by our conditional adaptation of
state-of-the-art generative methods and the effectiveness of
our weakly-supervised discriminator network (WSDN) in
enhancing the quality of their generated data.

Table I depicts a comparison of FID, MMD and JERK
for various generator architectures on the NTU RGB+D
benchmark dataset. We evaluate each distribution under the
respective settings of each method. Our first observation is
the significant quality improvement brought about by the
architecture of previous generative models, specifically the
adapted CGAN and adapted CSGN, with conditional training
that incorporates class-embedded information into their GAN
architecture.

As our work is based on the premise that a set of unsuper-
vised data is available, we limited the number of annotated
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Fig. 10. Accuracy Evolution. The graph displays the accuracy evolution
of synthetic data for each baseline compared to using real data, starting
from 19,000 and 39,000 real samples. WSF stands for our weakly-supervised
framework.

samples to 1,000 from each generative model – Kinetic-
GAN, Adapted CSGN, and Adapted cGAN - and included
100,000 synthetic unsupervised samples from the respective
baseline. In practice, each experiment starts rigorously with
the same amount of annotated labels. To further enhance the
quality of the generated samples from all three baselines,
we employ an iterative selection process through our WSDN
framework, which further exhibits quality improvement com-
pared to the original samples from the adapted architectures.
This demonstrates the effectiveness of our proposed WSDN
framework in enhancing the quality of the generated samples.

To evaluate the performance evolution, we conducted a five-
fold experiment, starting with 19,000 and 39,000 real samples.
We compared the evolution of different sample sets, includ-
ing 1,000 real samples, 1,000 annotated synthetic samples,
1,000 samples generated by our WSDN framework, the top
1,000 samples filtered by JERK, and 1,000 randomly-samples
synthetic samples. These sets were individually compared to
their respective baselines. While using generated data did not
surpass the performance of real data, our results demonstrate
a significant improvement without the need for fine-grained
annotation (Fig. 10). Specifically, we can improve recognition
accuracy up to 1.23% using only 1,000 annotated synthetic
samples, 0.97% with only 1,000 WSDN-generated samples,
and 0.86% using just the top-1,000 samples from JERK. The
pink region indicates the potential for improvement that our
WSDN approach can achieve, which is encouraging as it
is closer to the performance of the synthetic annotated data
compared to unfiltered/random samples. Even with randomly
generated samples from the conditional training adaptation,
our method achieved a slight improvement in the results,
which can also be positively regarded. This demonstrates the
effectiveness of our approach and highlights the potential for
further improvement with more refined generative models and
iterative training. Table II and III showcases the performance
of our proposed framework on two benchmark datasets,
namely NTU RGB+D [42] and NTU-120 RGB+D [30]. For
each synthetic baseline, we rigorously used only 5,000 samples

TABLE II
SEMI-SUPERVISED LEARNING EVALUATION ON NTU RGB+D [42].

TOP-1 ACCURACY REPORTED FROM SMALL PERCENTAGES OF TRAINING

DATA. THE FIRST ROW OF EACH BACKBONE NETWORK REPRESENTS THE

RESULTS OF ONLY USING THE SUPERVISED DATA

generated by our method, in addition to the full set of real
(supervised) data.

D. Distribution Complementarity

In addition to evaluating the overall quality of synthesized
actions, we also explore how diversity across kinematic fea-
tures can be achieved by combining real and generated data.
The performance of a single action can vary from person to
person, scenario to scenario, and even when performed by
the same person twice. To account for such variability, we
have identified several kinematic features that are relevant to
the motion and movement of each skeleton. These features
also include motion energy, which characterizes the temporal
dynamics by capturing the amount of movement and how it
changes over time within an action.

While generative models have the ability to create synthe-
sized actions within the range of real data, the quality of
the generated data can vary significantly depending on the
architecture of the generator. To investigate this hypothesis,
we utilize shape metric distributions, such as skewness and
kurtosis, to directly compare the characteristics of real data
with synthetic data. By measuring the asymmetry of the
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TABLE III
SEMI-SUPERVISED LEARNING EVALUATION ON NTU-120
RGB+D [30]. TOP-1 ACCURACY REPORTED FROM SMALL

PERCENTAGES OF TRAINING DATA. THE FIRST ROW OF EACH

BACKBONE NETWORK REPRESENTS THE RESULTS OF

ONLY USING THE SUPERVISED DATA

distribution through skewness, the peakedness and flatness of
a distribution through kurtosis, we can analyze how kinematic
features vary between real and synthetic samples.

Given that the model’s ability to generalize to unseen data is
essential, we aimed to generate a diverse set of synthetic data
to augment the real training set. By increasing its diversity,
we hoped to create a more robust and generalizable model.
In essence, our primary objective was to improve the model’s
ability to recognize actions that it had not encountered during
training.

Fig. 11 demonstrates the degree of diversity achieved in
the distribution of all four kinematic features while increasing
both real and synthetic data. One key observation is that
there are noticeable differences across all baselines, which
is expected due to the inherent variation factors from the
latent space [6], [14]. The second observation is the differ-
ence in diversity between Kinetic-GAN and CSGN generated
skeletons when compared to real data. CSGN uses Gaussian
processes to model the temporal relationships in a latent
sequence, and as a result, from a generative perspective,
there are more entangled latent factors with multiplicative

Fig. 11. Skewness vs Kurtosis. Comparison between the skewness and
kurtosis of real and synthetic data used to train action recognition models.

interactions across the latent sequence. This has been
previously demonstrated in image modeling [23], [24], [43].
On the other hand, Kinetic-GAN excels in terms of diver-
sity by employing a mapping network that generates an
intermediate latent space. This approach facilitates improved
separation of various factors of variation within the data.
Additionally, Kinetic-GAN includes a noise injection mod-
ule which introduces stochastic variation into the generation
process. These two factors contribute to the ability of Kinetic-
GAN to produce more diverse samples when compared to
CSGN and cGAN.

VI. CONCLUSION, LIMITATIONS AND FURTHER WORK

In this paper, we propose employing generative adversarial
and graph convolutional networks for augmenting skeleton-
based human action data. By generating synthetic data that
captures both the structural and temporal aspects of the data,
the proposed method outperformssupervised state-of-the-art
action recognition and synthesis methods in terms of accuracy
and diversity. Furthermore, this work introduces an alternative
approach to quantitatively evaluate generative models by
considering the context of skeleton data. While physics-based
metrics are manually crafted and may introduce biases in
physics characteristics due to the selected samples, they intro-
duce a novel perspective that, when combined with current
state-of-the-art metrics, enhances the comparison of models.
We investigate the properties of both proposed approaches
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on four real-world benchmarks (NTU RGB+D and NTU-120
RGB+D), advancing the state-of-the-art performance metrics
by a significant margin. Furthermore, existing skeleton-based
generative models remain confined to the data on which they
are trained, posing challenges in generating novel motions
and actions—also acknowledged as a limitation in this work.
Nevertheless, the integration of physics-guided metrics and
knowledge represents an active area of research aimed at
addressing and overcoming such limitations.
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