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A B S T R A C T   

Self-supervised learning (SSL) is a promising method for gaining perception and common sense from unlabelled 
data. Existing approaches to analyzing human body skeletons address the problem similar to SSL models for 
image and video understanding, but pixel data is far more challenging than coordinates. This paper presents 
ATOM, an SSL model designed for skeleton-based data analysis. Unlike video-based SSL approaches, ATOM 
leverages atomic movements within skeleton actions to achieve a more fine-grained representation. The pro
posed architecture predicts the action order at the frame level, leading to improved perceptions and represen
tations of each action. ATOM outperforms state-of-the-art approaches in two well-known datasets (NTU RGB + D 
and NTU-120 RGB + D), and its weight transferability enables performance improvements on supervised and 
semi-supervised tasks, up to 4.4% (3.3% p.p.) and 14.1% (6.3% p.p.), respectively, in Top-1 Accuracy.   

1. Introduction 

The significant advancements in various image-based tasks and ap
plications have laid a robust groundwork of techniques and expertise to 
expedite the automation of video comprehension. However, such data- 
driven approaches [1–4] highly depend on the scale of the learning 
set, where, naturally, has been an unprecedented increase in data 
sources [5–9]. Hence, the development of unsupervised and self- 
supervised learning techniques has become a promising cue to surpass 
the impracticable labelling process. Despite great success in natural 
language processing (NLP) [10–13] and image-based [14–16] problems, 
self-supervised methodologies towards human behaviour are still 
limited due to their complexity and transferability to supervised models. 
Current approaches in video understanding have explored pretext tasks, 
such as contrastive learning [17–19], motion prediction [20], jigsaw 
puzzle solver [21], video clip order [22–24] and speed prediction [25]. 
The goal is to establish foundational knowledge and approximate a form 
of apriori common sense. Variations of these pretext tasks have been 
proposed in 3D human action recognition [26–29], which often incor
porate incremental tasks or modules to improve perception in a self- 
supervised setting. 

However, there are three shortcomings of these skeleton-based 

methods. (1) Imprecise representations by applying SSL video-based 
approaches to skeleton data. Since videos are highly complex data, 
methods similar to [22,25] become suboptimal when applied to skele
tons. These models were trained using SSL strategies specifically devised 
for video data, and thus do not capture the fine grained information of 
the human pose. (2) The computational and task concept complexity. 
The popularity of multi-task and meta-learning led to current techniques 
apply additional pre-text tasks [27,29] for self-supervision in action 
recognition. However, as previously reported [33] pre-training followed 
by fine-tuning on single-tasks outperforms multi-task learning due to the 
increased complexity of a self-supervision paradigm. (3) The difficulty of 
architecture transferability. Due to increased task complexity, recent 
methods are introducing supplementary modules [34,27] into the ar
chitectures to pre-train (e.g., action prediction and reconstruction). 
Although effective in resolving unlabelled tasks, the difficulty of repli
cating and combining these methods across various architectures in
creases, along with the challenge of transferring weights to supervised 
tasks due to architectural differences. Following the well-known tax
onomy of human behaviour, [35,36], this paper proposes an atomic 
motion representation learning approach (ATOM) by analyzing the 
lowest hierarchy level of motion (over an action execution), also known 
as atomic dynamics, to address the above-mentioned limitations. Our 
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methodology leverages the atomic dynamics over human behaviour at 
the frame level to improve learning and solve spatial and temporal re
lationships without any label and supplementary architecture modules 
or multiple tasks. Inspired by self-supervised learning of language rep
resentations through sentence order prediction [10,11,13], we split an 
action into smaller chunks and even frames the same way a sentence is 
split into words and even letters. The proposed method employs time- 
wise features extracted directly from the model we want to pre-train 
to predict the order of a shuffled action at the frame level (example in 
Fig. 1). Additionally, our approach can predict frames or chunks of the 
action from arbitrary parts of the video, which completely disregards 
any constraint related to allowing different factorization orders of the 
distribution. Fig. 2 illustrates the overview of the proposed framework 
applied to the vanilla spatiotemporal Graph Convolutional Networks 
(GCNs). Our work makes three main contributions. Firstly, we propose a 
novel and scalable atomic motion representation learning approach for 
3D human action recognition. Secondly, we present a methodology that 
can be easily integrated and replicated into any skeleton-based model. 
Finally, we demonstrate the effectiveness of our approach through semi- 
supervised and self-supervised learning, achieving significant improve
ments in action recognition performance on two benchmark datasets: 
NTU RGB + D [37] and NTU-120 RGB + D [38]. Our results show that 
ATOM outperforms the current state-of-the-art methods in both 
datasets. 

2. Related work 

The use of self-supervised learning skeleton-based behaviour anal
ysis intends to model 3D joint coordinates from unlabeled data. Current 
methods learn to extract structural and dynamic patterns by applying 
multiple video-based SSL pretext tasks and incremental modules into the 
base architecture they want to fine-tune to solve those tasks. 

2.1. Skeleton-based behaviour analysis 

The human body pose is one of the promising research lines in 
behaviour analysis. This kind of structured representation is semanti
cally rich and very descriptive of human dynamics, attenuating 
appearance noises that RGB and depth data contain and, consequently, 
driving the learning process solely over human behaviour. Skeleton- 
based behaviour analysis rapidly evolved over the last decade from 
pseudo-images with CNNs [39–42] and sequence coordinate vectors 
with RNNs [43–47] to the solid improvements of GCNs 
[48,49,32,30,50–55], which learn to better represent embedded struc
tural information by modeling skeleton data as a spatiotemporal graph. 

However, self-supervised learning approaches still apply video-based 
techniques, where RGB (and depth) data is far more complex than po
sitional joints information. 

2.2. Self-supervised learning 

Despite promising early results on self-supervised learning in NLP 
[10–13] and image [14–16] fields, such improvements in human 
behaviour analysis are yet to be achieved due to data complexity. Cur
rent image-based techniques solve jigsaw problems [21] to learn spatial 
relationships, image colourisation [56] by mapping objects to colours 
and further data transformations, such as scaling, inpainting and 
warping [57] through contrastive learning to construct positive and 
negative pairs. Some extensions of 2D techniques to 3-dimensional data 
[58,59] were also applied but lacked extracting temporal information. 
More recently, video-based SSL were proposed through playback speed 
[25], cycle consistency [60] and motion continuity [61] to pay more 
attention to the temporal axis. Since skeleton data is obtained from RGB 
and depth sources, naturally, our intuition leads us to apply SSL tech
niques from previous image and video-based works. However, as pre
viously stated, such exploration towards self-supervised skeleton-based 
behaviour analysis is still minimal with concerning limitations. Previous 
works focused on motion prediction [34,27] with an autoencoder ar
chitecture to learn an encoder that is later fine-tuned to a supervised 
task. However, designing such a decoder lacks reproducibility for other 
encoder architectures and sometimes requires repeatedly conceiving a 
new decoder. Applying solely RGB video-based SSL techniques [29] (e. 
g., jigsaw puzzle), may become suboptimal and suffer from limitations 
[28] at both spatial and temporal levels (as shown in Table 3). Addi
tionally, the increased number of parallel tasks will restrict the power of 
the pre-trained representations, especially for the fine-tuning ap
proaches, becoming even more complex to solve [21]. This paper pro
poses a novel approach that explores fine-grained information at the 
frame level without additional architecture modules and computational 
complexity to easily pre-train and become greatly beneficial. The video- 
based works most related to ours are those which try to predict the time 
order [22–24]. Furthermore, we expect to offer a new direction for 
learning standards in a self-supervised paradigm for skeleton-based 
behaviour analysis. 

3. Proposed method 

SSL methods learn valuable representations when applied to non- 
trivial and non-ambiguous concepts [21], taking into account the type 
of data and problem. ATOM aims to improve the recognition accuracy of 
supervised methods while increasing the easiness of weight trans
ferability into different models through atomic behaviour analysis and 
prediction. This section presents 1) the proposed approach, introducing 
the vanilla spatiotemporal Graph Convolutional Network (GCN) adop
ted, 2) the proposed atomic methodology, and 3) the improvements 
made in the ATOM module. 

3.1. Graph convolutional networks preliminaries 

GCNs are currently the state-of-the-art for 3D human action recog
nition, and our proposed ATOM module is not limited to this model type, 
but can also be applied to other model types such as pseudo-image- 
based, autoregressive, generative, and more. For consistency purposes, 
we adopt a notation as close as possible to previous GCN works [30–32]. 
A spatiotemporal graph G = (V ,E ) denotes the skeleton data with N 
joints and T frames. Accordingly, the skeleton sequence’s feature map is 
represented as X ∈ RN×T×C, where C is the number of channels 
describing the joints coordinates. A GCN is comprised of both spatial and 
temporal graph convolutions, where an adjacency matrix A ∈ {0,1}N×N 

and corresponding identity matrix I determine the intra-body joints 

Fig. 1. Atomic order prediction. In a single forward pass of the whole action, 
we predict the order of its frames/chunks. The proposed ATOM scheme is able 
to split and learn ordering up to 64 frames/chunks, which is the key to obtain 
improved action representations. 
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connections over the spatial dimension. For a single frame, the graph 
convolution is computed as: 

S (X) =
∑p

i=1
Λ− 1

2
i (Ai ⊙ M)Λ− 1

2
i XWi, (1)  

where the degree matrix Λii
p =

∑
j(A

ij
p) normalises the adjacency matrix 

Ap through the number of edges attached to each joint node. Wp denotes 
the stacked weight vectors for each partition group p (spatial configu
ration proposed by [30]), and M ∈ RN×N is a learnable weight matrix 
(initialised as an all-one matrix) on each layer. 

Since consecutive frames describe consecutive skeletons, one- 
dimensional kernels are used as the temporal graph convolution, 
which is applied over the temporal axis after the spatial graph convo
lution. The spatiotemporal graph convolution is given by convolving the 
positional features joint-wise as: 

T (S (X)) = S (X)*w, (2)  

where w ∈ R1×t×C is the temporal kernel with t as the number of frames 
to be convolved in the kernel. Eq. (2) will be further employed to extract 
the last layer of the corresponding model M we want to pre-train. The 
rationale is to obtain temporal features from spatial receptive fields and, 
therefore, dynamically operate at the atomic motion representation 
level directly from the model itself. 

3.2. Atomic motion representation 

Recent well-known self-supervised language representations [10,13] 
feed entire sequences directly to the model (as a bidirectional approach), 
achieving unprecedented results, such as in sentence order prediction. 
However, self-supervised video-based order prediction [22–24] ap
proaches will directly divide the input into multiple clips or chunks 
before feeding it to a model and working in a multi-stream paradigm to 
solve the desired task. Despite being understandable in video data, due 
to its complexity and achieving a more granular level of information, 
feature concatenations are manually structured and will lack spatio
temporal dependencies between clips. ATOM consists of a self- 
supervised technique using atomic motion representation. As previ
ously expressed, we assume skeleton-data closer to a text data concept 
rather than video data in pre-training representation learning. This hy
pothesis is supported by the fact that skeleton-based models define a 
fixed number of joints (V ) and edges (E ) across time for every human 
present in the data, which is far simpler than pixel data. Additionally, 
this is one of the reasons why some autoregressive approaches [47,62] in 
human action recognition still outperformed image-based algorithms 
[63,42] before GCNs became the mainstream. Since temporal graph 
convolutions are computed joint-wise over spatial graph convolutions, 
we compute Eq. (2) from the last layer of any model used in our ex
periments and, inherently, obtain a sequential temporal representation 

(as shown in Fig. 1). Such temporal feature representations extracted 
from a whole action X = 〈x1, x2,…, xn〉 with n dimensions allow us to 
grasp and directly work with dynamic features xn at the atomic level 
without compromising any temporal dependencies, instead of working 
with multiple forward passes of splitted action chunks and subsequently 
concatenated. 

3.3. Atomic order prediction 

The proposed atomic representation allows the model to learn on its 
own without manually structured features (e.g., pairwise feature 
concatenation [24,22]) or modifications to the current architecture. 
Since temporal features are obtained from spatial features, which are 
extracted directly from the skeleton data, it enables modelling bidirec
tional temporal dependencies from any segment of the action. For a given 
action sample X with T frames, the number of different orders T! is 
factorial. However, instead of treating the order prediction task as an 
order classification, the task is formulated as an independent index 
classification problem (see Fig. 2), where the model can classify any 
index to any frame across the action. Previous works [22] claim that this 
proxy task at the frame level, and even by dividing the action into 4 clips, 
becomes too hard to solve with video data. Yet, since we are directly 
working on human dynamics (skeleton), the complexity is softened and 
becomes optimal to work at such a granular level. Specifically, for an 
action sequence X, we define the input to a model M as the concatenation 
of shuffled frames or temporal chunks S. When the order is predicted at 
the chunk level instead of frame level, we denote a temporal chunk k as 
Xk ∈ RN×k×C = {X1, X2, …, Xk}, k ∈ Z ∧ ∀kmodT = 0 ∧ 1 < k⩾T. As 
illustrated in Fig. 2, the core idea of ATOM’s methodology is to perform 
independent index classification, and as a result of our atomic motion 
representation, we are able to output a probability distribution for each 
frame or chunk. After extracting a temporal feature vector from model 
M , we split it into k subvectors, which will implicitly correspond to the 
atomic representation of each Sk and inherently possess spatiotemporal 
features from previous and following chunks. Such bidirectional features 
can dynamically capture spatiotemporal dependencies, where we then 
use a linear layer k for each frame/chunk k as follows: 

sk = W kM (S)k + bk, (3)  

where W k and bk are the parameters of linear transformation k. The 
probability distribution is then calculated to predict the index k being 
corrected as: 

pk =
exp(sk)

∑K

l=1
exp(sl)

, (4)  

where K = {1,2,…, k} is the total number of frames/chunks to be or
dered. Since the same model M parameters are shared across all linear 

Fig. 2. Cohesive view of the proposed 
atomic methodology. Example of 
applying the proposed ATOM module to 
a skeleton-based model (e.g. ST-GCN 
[30], As-GCN [31] or 2s-AGCN [32]) 
with an action divided into k = 8 tem
poral chunks: given an action sample X 
with T frames, the sequence is shuffled 
into chunks of T/k framesor at the frame 
level, where k = T. The chunks are then 
concatenated and fed the model M we 
want to pre-train. The extracted time- 
wise feature vector is split into k sub- 
vectors and fed into k different standard 
Softmax layers, where each one predicts 
the corresponding temporal index k.   
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layers, and index orders during training, sk has information on every 
other sl, l ∕= k in the sequence, hence being able to capture bidirectional 
context. The assumption behind this is that the model M must jointly 
learn to understand the underlying spatial content of the skeleton 
alongside its motion across the shuffled action before they can distin
guish between frames/chunks. Formally, we define independent index 
classification by the mean loss of each predicted index from each frame/ 
chunk as: 

L =
1
K

∑K

l=1

(

−
∑K

k=1
yk

l log(pl
k)

)

, (5)  

where yk
l and pl

k are the probability of the action chunk k belonging to 
index of shuffled frame/chunk l in groundtruth and predction and K the 
number of total frames/chunks. The loss L is then backpropagated to 
optimise the whole ATOM framework. When the framework is trained to 
predict the order of such fine-grained information, the model M is 
trained to extract meaningful and precise spatiotemporal features and 
builds an approximation form of perception from human skeleton data 
at the frame level without action labels. Subsequently, since any modi
fication was made to the skeleton-based architecture, the weights are 
transferred to fine-tune over a supervised task with apriori knowledge 
achieved. 

4. Experiments and discussion 

In this section, extensive experimental evaluations are performed to 
validate the proposed approach on four benchmarks. The ablation 
studies examine the contributions and efficacy over both benchmarks of 
NTU RGB + D [37]. Then, our best performing model is compared to the 
state-of-the-art approaches over NTU RGB + D [37] and NTU-120 RGB 
+ D [38] under different settings. 

4.1. Dataset, evaluation metrics and experimental settings 

NTU RGB þ D[37]. The dataset contains 56,880 video samples 
across 60 action classes, each with 3D skeleton data from 40 volunteers 
and 25 joints per skeleton. Two recommended benchmarks are pro
vided: 1) cross-subject, which trains models on 20 subjects and tests on 
the remaining ones, and 2) cross-view, which trains on camera views 2 
and 3 and tests on view 1. 

NTU-120 RGB þ D[38]. This dataset is an extended version of its 
predecessor, comprising 114,480 video samples with 120 action classes, 
captured with three camera views in 32 different setups and 106 vol
unteers with 25 body joints for each skeleton. The dataset proposes two 
benchmarks: 1) cross-subject, where models are trained on 53 subjects 
and tested on the remaining ones, and 2) cross-setup, where models are 
trained on even setup IDs and tested on odd setup IDs. 

The datasets are used in their original format, which is already 
presented in a user-friendly and compact form that can be accessed athtt 
ps://rose1.ntu.edu.sg/dataset/actionRecognition/. 

Evaluation metrics. In accordance with most skeleton-based action 
recognition approaches, we adopt the Top-1 and Top-5 accuracy for 

metrics for evaluating the recognition performance. The conventional 
Top-1 accuracy assesses the order prediction. Experimental settings. 
Two different settings are used to validate the proposed framework. (1) 
Self-supervised pre-training: the backbone network is initialised with 
the learned weights from the self-supervised task instead of training 
from scratch and randomly initialising the network’s weights. We then 
learn the network for action recognition. (2) Semi-supervised learning: 
The network is pre-trained without any action labels and using the 
learned weights to initialise the classifier, which will be trained on small 
percentages of training data (5% and 10%). 

Implementation details. Our framework is implemented with 
PyTorch [64] to facilitate the computation comparisons and trans
ferability between other backbone networks, which were also developed 
with the same library. The proposed method for order prediction uses 64 
frames as input since its the action temporal execution average in NTU 
RGB + D [37] and NTU-120 RGB + D[38], where the maximum length is 
300 frames. For this reason, normalising to 0 the remaining frames or 
cycling those actions will naturally disturb the learning process of the 
order prediction task. We evaluate the proposed framework with three 
backbone networks: ST-GCN [30], As-GCN [31] and 2s-AGCN [32]. It is 
worth mentioning that modifying the optimisation strategy, hyper
parameters or learning rate schedulers during pre-training may lead the 
trained weights to local minimums when transferring to the supervised 
task. Therefore, we adhere strictly to the original training and evalua
tion settings of each architecture as specified in the respective dataset. 
Apart from the ablation studies, all reported results in this paper use k =

8 temporal chunks with configuration (D) from Table 1 if not mentioned 
otherwise. 

4.2. Ablation study 

Before diving into state-of-the-art comparisons, we first demonstrate 
experimentally that our proposed ATOM’s properties considerably 
improve action recognition. 

Different framework designs. In Table 1, we compare the action 
recognition accuracy for various framework architectures in both 
benchmarks of NTU RGB + D [37] under self-supervised pre-training 
settings. The “supervised” baseline (ST-GCN [30]) represents the back
bone network trained from scratch and randomly initialising the base
line’s weights. We start with our proposed configuration (A) by applying 
action sequence order prediction to skeleton data with divided action 
chunks under the order classification paradigm. The backbone network 
is fed with one clip each at a time, and the extracted features are pair
wise concatenated (similar to [24,22]). Since our goal is to achieve 
atomic motion representation by using a more significant number of 
chunks than [24,22], we then confirm the slightly improved perfor
mance by concatenating those features in the correspondence shuffled 
order before feeding to a single FCN (B) to perform order classification. 
After observing the increased flexibility (over skeleton data) of the 
framework dynamically operating through the concatenated features, 
we also concatenated shuffled chunks and extracted a feature vector 
with a single forward pass (C). Finally, it leads us to introduce single 
order index classification through an adaptive FCN, where each frame or 

Table 1 
Evaluating different architecture designs on NTU RGB + D [37]. Except for the “supervised” baseline, each configuration is pre-trained with order prediction before 
being applied to the action recognition task.   

Arch Method Top − 1 Top − 5 Top − 1 Top − 5 

NTU RGB-D   Cross-Subject Cross-View 

ST-GCN Supervised [30] 81.51 96.92 88.34 98.33 

A Proposed 82.36 96.99 88.75 98.61 
B + Single FCN 82.53 97.04 89.07 98.72 
C + Adaptive Feat. 82.93 97.09 89.58 98.81 
D + Adaptive FCN 83.24 97.13 90.36 99.08  
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chunk has a corresponding linear layer (D) to classify such fine-grained 
information and distinctively overcome the baseline. 

Order prediction effectiveness. After achieving such improve
ments in skeleton-based order prediction, we also test the limits of our 
framework by increasing the number of indexes to be predicted across 
both benchmarks of NTU RGB + D [37]. Naturally, even for humans, the 
difficulty of the problem proportionally increases. Considering the input 
to our network is an action sequence of 64 frames, we perform order 
prediction through the power of 2 action tuples, as illustrated in Fig. 3. 
The proposed ATOM framework can almost perfectly predict the order 
of up to 8 different action chunks. Considering that the accuracy of 
random guessing for the task of 16 different chunks is 6.3%, the 
framework notably learns precise information and achieves 75.6%. 
Despite the drop in accuracy with 32 splits and at the frame level (64 
frames), we can reach 18.9% and 9%, respectively, showing that ATOM 
indeed learns to analyse the increasing fine-grained information, which 
can also be positively regarded when taking into account the accuracy of 
random guessing. 

Additionally, we also verify how effective can the proposed frame
work be in proportion to the increased number of chunks used to pre- 
train the backbone network. As shown in Fig. 4, even with the most 
straightforward task (action split in 2) and the most complex task 
(frame-level, 64 frames), the proposed strategy is still capable to boost 
the action recognition performance. The peak performance was ach
ieved when pre-training the backbone network to predict 8 shuffled 
chunks. This indeed confirms the difference in self-supervised learning 
modalities between skeleton-based data and video data, where previous 
work [22] achieved better performance with only 3 shuffled clips in a 
total of 48 frames (16 frames each clip). 

Skeleton structure learning. Finally, we also analyse directly how a 
backbone network performed over a pretext task, such as order pre
diction, can learn the importance of physical connections of the human 
body compared with the action recognition task, where intuitively, we 
provide much more information about human dynamics. Fig. 5 shows an 
example of the adjacency matrices learned for the cross-subject bench
mark of NTU RGB + D [37]. The green scale of each element in the 
matrix represents the strength of the connection between respective 
joints. The left matrix is the original adjacency matrix from the baseline 
[30] trained for action recognition from scratch. The middle matrix is 
our framework (using the baseline as the backbone network) trained for 
order prediction. The right matrix is our baseline initialised with the pre- 
trained weights for action recognition. It is clear that the learned 
structure of the graph with solely order prediction (middle) is a bit more 
flexible (lighter colour) while containing a similar pattern as the base
line trained from scratch (left) for action recognition despite far less 
information provided about the skeleton. Furthermore, the weight 
transferability (right) for action recognition can also be regarded as 
beneficial since we can distinctly observe the strengthening between 

adjacent joints. 

4.3. Comparison with the state-of-the-art 

We perform the evaluation of our best model architecture effec
tiveness with respect to the previous state-of-the-art approaches of su
pervised, self-supervised and semi-supervised learning towards 
skeleton-based action recognition over four evaluation protocols from 
NTU RGB + D [37] and NTU-120 RGB + D[38]. 

4.3.1. Self-supervised learning 
As previously described, we evaluated our method termed ATOM 

combined with three GCN-based architectures and directly compared 
them with the latest SSL techniques in the video and skeleton domain. As 
shown in Table 2, our ATOM methodology achieves the best results on 
every backbone network over the two benchmarks of NTU RGB + D 
[37]. The first observation was the slight decrease and increase in per
formance from pace prediction techniques [25] over skeleton data, 
confirming our claims that applying video-based techniques to the 
human skeleton does not always work. Furthermore, the superiority of 
our model compared with multi-task methods (MCC) [27], shows the 
efficacy of avoiding solving multiple problems at once, which can lead to 
an ambiguous concept [21] over the self-supervised pre-training pro
cess. In our view, this is mostly due to the fact that they adopted a pace 
prediction module in conjunction with a motion continuity module to 
learn a decoder to reconstruct the interpolated motion, which can 
disturb the learning process of the decoder and, consequently, the 
encoder. Additionally, it is also challenging to generalise a decoder that 
suits multiple backbone networks at once, increasing the difficulty of 
designing new decoders, e.g., multi-stream architectures (2s-AGCN 
[32]). 

Table 3 shows the results obtained in a far more challenging dataset 

Fig. 3. Order prediction accuracy increasing action chunks on NTU RGB + D [37]. The green line correspond to the respective accuracy of random guessing.  

Fig. 4. Performance evolution increasing action chunks on NTU RGB + D 
[37]. The horizontal lines correspond to the respective performances without 
self-supervision on each benchmark. All results apply k = 8 temporal chunks, if 
not mentioned otherwise. 
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Fig. 5. Learned weight importance adjacency matrix on the cross-subject benchmark of NTU RGB + D [37]. The strength between connected joints is represented 
by the green scale. The left matrix is the original learned adjacency matrix. The middle matrix is ATOM (ST-GCN as backbone) trained on the pretext task. The right 
matrix is the corresponding matrix learned by initialising the weights with ATOM for action recognition. 

Table 2 
Action recognition performance comparison on NTU RGB + D[37]. The first row of each backbone network represents the results trained from scratch.   

Arch Method Top − 1 Top − 5 Top − 1 Top − 5 

NTU RGB-D   Cross-Subject Cross-View 

ST-GCN Supervised [30] 81.51 96.92 88.34 98.33 

VCOP [22] 82.24 97.12 88.61 98.54 
Jigsaw Puzzle [65] 81.78 96.98 89.02 98.57 
Pace Prediction [25] 81.54 96.97 88.77 98.55 
MCC [27] 83.01 97.05 89.68 98.84 
ATOM (ours) 83.24 97.13 90.36 99.08 

As-GCN Supervised [31] 86.76 97.58 94.15 98.99 

VCOP [22] 87.51 98.14 94.91 99.03 
Jigsaw Puzzle [65] 87.06 97.96 94.61 99.02 
Pace Prediction [25] 87.31 98.03 95.01 99.13 
MCC [27] 88.37 98.39 95.45 99.26 
ATOM (ours) 88.53 98.45 95.68 99.39 

2s-AGCN Supervised [32] 88.51 99.43 95.12 99.14 

VCOP [22] 88.98 98.73 95.76 99.43 
Jigsaw Puzzle [65] 88.81 98.60 95.35 99.31 
Pace Prediction [25] 89.18 98.64 95.55 99.30 
MCC [27] 89.66 98.80 96.27 99.45 
ATOM (ours) 89.79 98.90 96.46 99.56  

Table 3 
Action recognition performance comparison on NTU-120 RGB + D[38]. The first row of each backbone network represents the results trained from scratch.   

Arch Method Top − 1 Top − 5 Top − 1 Top − 5 

NTU-120 RGB-D   Cross-Subject Cross-Setup 

ST-GCN Supervised [30] 75.08 89.92 76.12 92.04 

VCOP [22] 76.04 92.15 76.82 93.73 
Jigsaw Puzzle [65] 76.26 92.45 77.07 94.99 
Pace Prediction [25] 75.78 90.88 75.89 91.24 
MCC [27] 77.02 94.93 77.78 95.83 
ATOM (ours) 77.65 95.64 79.44 96.52 

As-GCN Supervised [31] 78.37 95.64 78.92 96.12 

VCOP [22] 78.37 98.14 80.01 97.02 
Jigsaw Puzzle [65] 78.55 99.29 79.87 96.98 
Pace Prediction [25] 78.04 96.11 79.75 96.83 
MCC [27] 79.37 96.42 80.81 97.23 
ATOM (ours) 79.98 96.96 81.45 97.96 

2s-AGCN Supervised [32] 79.55 96.62 81.73 96.91 

VCOP [22] 80.57 97.13 82.49 97.93 
Jigsaw Puzzle [65] 80.78 97.21 82.36 97.83 
Pace Prediction [25] 80.29 97.10 82.08 97.68 
MCC [27] 81.25 96.65 83.26 97.43 
ATOM (ours) 82.01 97.73 84.08 98.07  
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(NTU-120 RGB + D [38]) with 120 different classes. Once again, the 
results obtained show the superiority of our framework on every back
bone over both benchmarks. Despite similar results on order prediction, 
the ATOM method reaches performance increases up to 4.4% (3.3% p. 
p.) over the supervised baseline. We justify this phenomenon with the 
increasing amount of training data compared to NTU RGB + D [37], 
which is also explored in the next section. Overall, our experiments point 
out that using single tasks specifically designed for skeleton-based data 
employed for pre-training becomes more promising than applying 
multiple tasks from video-based techniques. 

4.3.2. Semi-supervised learning 
Since, in most situations of real-world applications, labelled data is 

not always available, training data-driven architectures becomes rather 
problematic. The evaluation in such conditions is a crucial experiment 
nowadays and not much adopted. For this reason, we also explore the 
proposed framework applied to small amounts of labelled data, specif
ically with 5% and 10%, to train our backbone networks. Table 4 reports 
the Top-1 accuracy results obtained under semi-supervised settings. The 
first conclusion is the poor performance of the baselines trained from 
scratch when data is insufficient. After transferring the pre-trained 
weights to the backbone networks, our framework is able to boost the 
recognition performance up to 14.1% (6.3% p.p.). From our perspective, 
the superiority of ATOM over previous SSL techniques is due to the fact 
that the reconstruction module of [27] is not so efficient when learning 
to generate human actions in such small percentages of data when trying 
to apply handcrafted features such as motion consistency and continu
ity. Consequently, learning an encoder in such conditions becomes 
suboptimal when compared to ATOM’s single task technique. 

5. Conclusions and further work 

Whereas the recognition and prediction of human actions have been 
the focus of significant research efforts in the security/surveillance 

domains, it is still required a substantially large number of training 
samples. This paper introduced a novel atomic motion representation 
approach for self-supervised human action recognition. The rationale is 
to dynamically leverage fine-grained information from the atomic rep
resentation extracted by the backbone network itself, where we are able 
to better model skeleton data without any labels, obtaining improved 
representations of human actions. As a result, the proposed methodol
ogy becomes more suitable for skeleton data even with a single pretext 
task. Also, ATOM scheme is able to overcome previous limitations by 
facilitating weight transferability across multiple different architectures 
without any modification to the proposed framework. Our method was 
evaluated on four well-known benchmarks from NTU RGB + D [37] and 
NTU-120 RGB + D[38], significantly advancing the state-of-the-art 
performance metrics. In order to extend the applicability of the pro
posed ATOM approach, future research could focus on analysing the 
performance of the method on longer action sequences beyond the 
current limit of 300 frames. This could provide insights into the scal
ability of the self-supervised task and further enhance the effectiveness 
of the approach in real-world scenarios. Furthermore, to enhance the 
performance of existing SSL methods, it would be beneficial to investi
gate the impact of the quality of the backbone network used for feature 
extraction, and to explore the use of alternative modalities or active 
learning strategies for selecting the most informative samples. 
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Labelled Data  

Arch Method 5% 10% 5% 10% 
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ST-GCN Supervised [30] 38.19 52.41 40.42 56.94 

MCC [27] 42.40 55.57 44.71 59.85 
ATOM (ours) 42.96 56.33 45.12 60.13 

As-GCN Supervised [31] 41.11 55.74 44.73 59.49 

MCC [27] 45.47 59.18 49.15 63.06 
ATOM (ours) 46.15 60.46 50.02 64.16 

2s-AGCN Supervised [32] 43.51 57.24 49.07 62.03 

MCC [27] 47.39 60.75 53.31 65.79 
ATOM (ours) 47.92 61.33 54.11 66.27        

NTU-120 RGB-D   Cross-Subject Cross-Setup 

ST-GCN Supervised [30] 38.19 52.41 40.42 56.94 

MCC [27] 42.40 55.57 44.71 59.85 
ATOM (ours) 43.74 57.12 46.23 62.13 

As-GCN Supervised [31] 41.11 55.74 44.73 59.49 

MCC [27] 45.47 59.18 49.15 63.06 
ATOM (ours) 46.93 61.19 51.03 64.95 
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ATOM (ours) 48.45 62.13 54.82 67.23  
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