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ABSTRACT
One of the major challenges in ocular biometrics is the cross-
spectral scenario, i.e., how to match images acquired in different
wavelengths (typically visible (VIS) against near-infrared (NIR)).
This article designs and extensively evaluates cross-spectral ocular
verification methods, for both the closed and open-world settings,
using well known deep learning representations based on the iris
and periocular regions. Using as inputs the bounding boxes of non-
normalized iris/periocular regions, we fine-tune Convolutional Neu-
ral Network (CNN) models (based either on VGG16 or ResNet-50
architectures), originally trained for face recognition. Based on the
experiments carried out in two publicly available cross-spectral ocu-
lar databases, we report results for intra-spectral and cross-spectral
scenarios, with the best performance being observed when fusing
ResNet-50 deep representations from both the periocular and iris re-
gions. When compared to the state-of-the-art, we observed that the
proposed solution consistently reduces the Equal Error Rate (EER)
values by 90% / 93% / 96% and 61% / 77% / 83% on the cross-
spectral scenario and in the PolyU Bi-spectral and Cross-eye-cross-
spectral datasets. Lastly, we evaluate the effect that the ”deepness”
factor of feature representations has in recognition effectiveness, and
- based on a subjective analysis of the most problematic pairwise
comparisons - we point out further directions for this field of re-
search.

1. INTRODUCTION

Iris recognition using near-infrared (NIR) wavelength images ac-
quired under controlled environments can be considered a mature
technology, which proved to be effective in different scenarios [1].
In contrast, performing iris recognition in uncontrolled environments
and at visible (VIS) wavelength is still a challenging problem [2, 3].
Some of the latest researches consist of biometrics recognition on
cross-spectral scenarios, i.e., using images of eyes from the same
subject obtained at the VIS and NIR wavelengths [4–7].

Recently, machine learning techniques based on deep learning
have been achieving great popularity due to the results reported in
the literature, which advance the state-of-the-art in various prob-
lems, such as speech recognition [8–10], natural language process-
ing [11, 12], digit and character recognition [13–15] and face recog-
nition [16, 17]. In the field of ocular biometrics, using deep learning
representation has been advocated both for the periocular [18, 19]
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and iris [6, 20–26] regions, with interesting and promising results
being reported.

As stated in previous works [20, 27], an often and open prob-
lem in ocular recognition is the matching heterogeneous images cap-
tured at different resolutions, distances and devices (cross-sensor and
cross-spectral). Regarding these problems it is difficult to design a
robust handcrafted feature extractor to address the intra-class vari-
ations present in this scenarios. In this sense, several recent works
demonstrate that deep representations report better results compared
to handcrafted features in iris and periocular region recognition [18–
20, 25].

Having in mind that deep learning frameworks are typically able
to produce robust representations, in this article we apply this fam-
ily of frameworks to extract and combine features from the ocular
region, obtained at different wavelengths, e.g., VIS and NIR. The
strategy described in this article is composed of some methodologies
extracted from the literature. For both the iris and ocular traits we
use as input the bounding box delimited regions used in the state-
of-the-art methods [18, 26]. Then, the features from these traits
were extracted using a similar approach proposed by [26]. In this
direction, the main contribution of this article is the extensive ex-
periments on two datasets comparing iris, periocular, and fusion re-
sults for both cross-spectral (VIS to NIR) and intra-spectral (VIS to
VIS, NIR to NIR) matching, reaching a new state-of-the-art results.
There is also the following four-fold contributions: (i) we show that
deep learning yield robust representations on two well-known cross-
spectral databases (PolyU and Cross-Eyed) for ocular verification
using closed- and open-world protocols; (ii) we report how two off-
the-shelf networks can be fine-tuned from the face domain to the
periocular and iris one; (iii) we analyze the use of a single deep rep-
resentation extraction schema, for both cross-spectral and the same
spectra scenarios; and (iv) we conclude about the benefits of fus-
ing the periocular and iris representations to improve the recognition
accuracy.

The remainder of this work is organized as follows. In Section 2,
we describe some recent works that use deep learning for iris and pe-
riocular recognition. Section 3 provides the details of the proposed
approach. Section 4 presents the databases, metrics and evaluation
protocol used in our empirical evaluation. The results are presented
and discussed in Section 5. Lastly, the conclusions are given in Sec-
tion 6.
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2. RELATED WORK

This section surveys the works that use deep learning frameworks for
iris and periocular recognition. Also, we summarize the most rele-
vant ocular recognition methodologies focused on the cross-spectral
scenario.

One of the first works applying deep learning to iris recognition
only was the DeepIris framework, proposed by Liu et al. [20]. Hav-
ing as a goal the recognition of heterogeneous irises using images
obtained by different sensors (i.e., the cross-sensor scenario), the au-
thors proposed a framework that establishes the similarity between
a pair of iris images using Convolutional Neural Networks (CNNs)
by learning a bank of pairwise filters. The experiments were per-
formed in the Q-FIRE and CASIA cross-sensor databases, reporting
promising results with Equal Error Rate (EER) of 0.15% and 0.31%,
respectively.

Another deep learning application for cross-sensor iris recog-
nition, designated DeepIrisNet, was proposed by Gangwar &
Joshi [21]. In their study, two CNN architectures were presented
and used to extract features and representations of iris images. Com-
paring to the baselines, their methodology showed better robustness
with respect to five different factors: effect of segmentation, image
rotation, input size, training size, and network size.

Nguyen et al. [23] argued that generic descriptors yielding from
deep learning frameworks can appropriately represent iris features
from NIR images obtained in controlled environments. The au-
thors compared five CNN architectures trained in the ImageNet
database [28]: AlexNet, VGG, Inception, ResNet and DenseNet.
Deep representations were extracted from normalized iris images at
different depths of each CNN model. Afterward, a simple multi-
class Support Vector Machine (SVM) was applied to perform the
identification. The experiments were carried out in the LG2200
(ND-CrossSensor-Iris-2013) and CASIA-Iris-Thousand databases
and compared with a baseline feature descriptor [29]. As main result,
the authors argued that features extracted from intermediate layers
of the networks reported better results than the representations in the
deeper layers.

Luz et al. [18] extracted deep representations of the periocular
region using the VGG16 CNN model. The authors reported promis-
ing results by using transfer learning techniques from the face recog-
nition domain, followed by fine-tuning using the ocular images. The
experiments achieved the state-of-the-art in the NICE.II and Mob-
BIO databases, which were obtained in uncontrolled environments
at the VIS wavelength.

Also using the NICE.II database, Silva et al. [30] proposed a
fusion method of iris and periocular deep representations by means
of feature selection using the Particle Swarm Optimization (PSO).
Similar to the methodology proposed in [18], the iris and periocular
deep representations were extracted with the VGG16 model trained
for face recognition and fine-tuned for each trait. Promising results
were reported in the verification mode only using iris information
and also using iris and periocular fusion.

Proença and Neves [19] argue that periocular recognition perfor-
mance is optimized when the iris and sclera regions are discarded.
Also, these authors describe a processing chain based on CNN that
defines the regions-of-interest in the input image. In their approach,
a segmentation process is only required to create the training sam-
ples. This process consists in generating a periocular image of a sub-
ject containing an ocular (sclera and iris) region belonging to other
subjects. Then, the generated samples are used for data augmenta-
tion and to feed the learning phase of the CNN model. The exper-
iments were performed in the UBIRIS.v2 and FRGC databases and

consistently advances the state-of-the-art in the closed-world setting.
Zanlorensi et al. [26] evaluated the impact of the segmentation

for noise removal and normalization when deep representations were
extracted from the iris images. The experiments reported that deep
representations extracted from an iris bounding box without segmen-
tation process achieved better results than normalized and segmented
images. In addition, the authors compared representations extracted
from the VGG16 and ResNet50 models and the impact of using data
augmentation techniques. A new state-of-the-art was reached in the
NICE.II database using only information from the iris region.

In terms of cross-sensor iris recognition, the methodology pro-
posed by Nalla and Kumar [6] introduced a domain adaptation
framework to address this problem and reported a new approach us-
ing Markov random fields. The experiments were performed using
two cross-sensor iris databases: IIT-D CLI and ND Cross sensor
2012; and one cross-spectral iris database: PolyU. The results re-
ported in PolyU database in the verification protocol at closed-world
achieved an EER value of 3.97% in NIR vs NIR comparisons and
6.56% in VIS vs VIS comparisons. Using the Markov random fields
on cross-spectral comparisons, their methodology achieved 23.87%
of EER.

In [25], the authors evaluated a range of deep learning architec-
tures applied to the cross-spectral iris recognition. The experimental
results were performed in the PolyU and Cross-Eyed databases. Ex-
perimental analysis indicates that iris features extracted from CNN
models are generally sparse and can be used for template compres-
sion. Several hashing algorithms were evaluated and the most effec-
tive was supervised discrete hashing achieving more accurate per-
formance and reducing the size of iris template. The best results
reported were achieved by incorporating supervised discrete hash-
ing on the deep representations extracted with a CNN model trained
with a softmax cross-entropy loss. This methodology reached an
EER value of 12.41% and 6.34% on the PolyU and Cross-Eyed
databases, respectively.However, the authors do not report the sys-
tem performance on the open-world protocol, which is a more re-
alistic scenario. Also, this methodology requires an approach for
the segmentation and normalization of the iris. To the best of our
knowledge, this work is the state-of-the-art on cross-spectral recog-
nition in the verification mode. Thus, it is used for comparison with
the methodology presented in this paper.

Also applied in the cross-spectral scenario, Hernandez-Diaz et
al. [31] proposed a method using a ResNet-101 model pretrained in
the Imagenet database [28] to extract deep representation from pe-
riocular images. The experiments were carried out in verification
mode using the IIITD Multispectral Periocular database [5] in three
different spectra: Visible, Night Vision, and Near-Infrared. The re-
sults were reported using features extracted at each layer from the
model using chi-square distance and cosine similitude to perform
the matching. The authors stated that the features extracted from
the intermediate layer from the ResNet-101 model achieved the best
results in the cross-spectral experiments.

Recently, two contests were performed using the Cross-Eyed
database, aiming to recognize iris and periocular (without the iris
region) traits in a cross-spectral environment [32, 33]. However, as
stated by Wang and Kumar [25], the results reported in these com-
petitions should be considered preliminary, as they employed a com-
parison protocol with less matching challenge than usual (only 3 im-
ages of each class were used in the inter-class comparison instead
of all against all) and did not provide information regarding which
images of each class were used in the inter-class matching (the au-
thors’ work only reported that the images were randomly selected).
Other problems include the availability of codes and also details of
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the methodologies, which limit the reproducibility.
Previous works on cross-spectral recognition such as [6, 25]

only use iris traits and require a methodology for iris segmentation
and normalization. Our proposal in this article combine information
from the iris and periocular regions. Also, for the iris trait, we use
only a bounding box, which does not require segmentation for noise
removal and normalization steps.

For completeness, there are several other applications with ocu-
lar images based on deep learning such as: spoofing detection [34],
recognition of mislabeled left and right iris images [35], liveness de-
tection [36], iris/periocular region location/detection [37, 38], sclera
and iris segmentation [39, 40], gender classification [41] and sensor
model identification [42].

3. METHODOLOGY

In this paper we analyze the use of deep representations from the
eye regions (iris and periocular) on cross-spectral scenario, i.e., ob-
taining models able to match VIS against NIR wavelength images.
Particularly, we evaluate and combine deep representations extracted
from two modalities (traits): the iris and periocular regions. In
the periocular modality, features were extracted from the entire im-
age (considering the iris, sclera, skin, eyelids and eyelashes com-
ponents). On the other way, the iris features were extracted from a
bounding box, i.e., a cropped image that contains only the iris region,
as described by Zanlorensi et al. [26]. These bounding boxes were
generated manually by coarse annotations and are publicly available
to the research community1and appears in [38]. Samples of the pe-
riocular and iris images used in this work are shown in Figure 1.

(a) (b) (c) (d)

Fig. 1. VIS (a,c) and NIR (b,d) samples from the PolyU (a,b) and
Cross-Eyed (c,d) databases. First and second rows show periocular
and iris images, respectively.

Deep representations from the periocular and iris regions were
extracted using a similar approach proposed in [26]. In this way,
the VGG16 [16] and ResNet-50 [17] CNN models trained for face
recognition were fine-tuned to each modality. We choose these mod-
els because they reported promising results in recent works applied
in ocular recognition [18, 25, 26, 30]. The architecture modifications
for both models consist of the removal of the last layer and the addi-
tion of two new layers. The first one is a fully-connected layer with
256 neurons that will be used as the feature representation and aim
to reduce the feature dimensionality, since originally VGG16 and
ResNet-50 have 4096 and 2048 features/outputs, respectively. The
other layer added has a softmax cross-entropy loss function and it is
used only in the training phase in an identification mode. We chose
a feature vector of 256 features based on the results reported by Luz
et al. [18], where the authors evaluated different feature vector sizes
and stated that vector with such size (256) showed the best trade-off

1https://web.inf.ufpr.br/vri/databases/
iris-periocular-coarse-annotations/

regarding matching time, amount of memory required and matching
effectiveness. The strategy applied to extract features from NIR and
VIS images is detailed in Figure 2.
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Fig. 2. The cross-/intra-spectral ocular recognition strategy. A single
model (ResNet50 or VGG16) is used to learn features from both
spectra: NIR and VIS.

The number of epochs used for training was chosen based on a
validation subset composed of 20% of the training set images. Af-
ter defining the number of epochs, the CNN models were trained
using the entire training set. The training was performed with the
Stochastic Gradient Descent (SGD) optimizer and without freezing
any weights of the pre-trained layers.

In the test phase, as previously mentioned, the last layer of each
model was removed and the features were extracted from the first
new last layer, composed by 256 neurons.

The all-against-all matching was performed using the cosine
distance metric, which measures the cosine of the angle be-
tween two vectors. Regarding the similarity of biometrics fea-
tures/representations, it is known that orientation is more important
than the magnitude coefficient. The cosine distance metric faithfully
matches this feature, being given by:

dc(A,B) = 1�
PN

j=1 AjBj
qPN

j=1 A
2
j

qPN
j=1 B

2
j

, (1)

where A and B stand for the feature vectors.
The iris and periocular region representations were combined,

applying the score-level fusion technique. Similar to approaches that
also used score-level fusion for iris and periocular region traits [6,
43, 44] and also based on the individual performance of each trait
in our experiments, we chose to use weights of 0.6 and 0.4 for the
periocular region and iris representations, respectively. To perform
fusion at the score-level, first, we compute the matching for each trait
independently, and then we calculated the weighted arithmetic mean
between the cosine distances computed for the iris and periocular
modalities.

It is important to note that, in the model learning process, all
images (NIR and VIS) were used to feed the CNN models, making
a single model to learn discriminant features of images captured in
both spectra. To the best of our knowledge, this procedure is similar
to the adopted in [25] for the CNN architecture. In the test phase
the features are extracted for all images NIR or VIS images. How-
ever, note that for evaluating the cross-spectral scenario, only images
acquired under different wavelengths are paired to match.
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4. DATABASES, METRICS AND PROTOCOL

This section describes the databases used, the experimental protocol
defined and the metrics considered appropriate to provide a mean-
ingful comparison between our method and the baselines.

4.1. Databases

Two well-known databases were used in our empirical evaluation: 1)
the PolyU; and the 2) Cross-Eyed databases, described below:

4.1.1. PolyU database

PolyU (PolyU Bi-spectral) database is composed of images obtained
simultaneously under both NIR and VIS wavelengths. The entire
database has 12,540 images with a resolution of 640 ⇥ 480 pixels.
For every spectrum, there are 15 samples of each eye (left and right)
from 209 subjects (418 classes) [6].

4.1.2. Cross-Eyed database

The Cross-Eyed (Cross-eyed-cross-spectral) iris database has 3,840
images from 120 subjects (240 classes). There are 8 samples from
each of the classes for every spectrum. The resolution of the images
is 400 ⇥ 300 pixels. All images were obtained at a distance of 1.5
meters, in an uncontrolled indoor environment, with a wide variation
of ethnicity and eye colors, and lightning reflexes [32].

4.2. Metrics

For evaluating the algorithms, we choose the EER metric, which is
determined by the intersection point of False Acceptance Rate (FAR)
and False Rejection Rate (FRR) curves generated when the accepta-
tion/rejection threshold is varied.

We also report the decidability score d0 [45]. The metric or in-
dex d0 measures how well separated are the two types of distribu-
tions (genuines and impostors), in the sense that recognition errors
correspond to the regions where both distributions overlap:

d0 =
|µE � µI |q
1
2 (�

2
E + �2

I )
, (2)

where the means and standard deviations of the genuine and impos-
tor distributions are given by µI , µE , �I , and �E , respectively.

Whereas the index d0 can be related to the feature vector discrim-
ination ability of an approach, the EER metric measures the real per-
formance of a biometric system. Therefore, regarding a real-world
application, we consider the EER as the primary metric in the results
reported in this work.

4.3. Protocol

In all experiments, the verification setting was the unique consid-
ered, in which pairs of images are compared in order to determine
whether a subject is who he claims to be or not. For this, following a
one-against-all pairwise matching strategy, all pairs of genuine and
impostor comparisons were generated.

For a fair comparison with the state-of-the-art methods, the test
protocol used in this work follows the procedures given in[6, 25],
which consists of a closed-world protocol, where different instances
of the same class are distributed in the training and test sets. In
the PolyU database, the first ten instances from every subject were
used for training and the remainder (five) were employed for the

matching. In the Cross-Eyed database, the first five instances from
every subject are used for training and the remaining three instances
were employed for the matching.

To perform the experiments, we considered that in both
databases, the NIR and VIS images were obtained synchronously.
Thus, here in the intra-class comparison in the cross-spectral sce-
nario, images of the same index were not matched, because the pair
represents the same image but in different spectra. Note that in the
work by Wang and Kumar [25], the authors considered that in the
Cross-Eyed database, non-synchronously spectrum images were ob-
tained (based on the numbers of intra- and inter-class comparisons),
so they matched NIR against VIS images of the same index in the
intra-class comparison. Then for a fair comparison with the state-of-
the-art method [25], in the closed-world protocol, we also report re-
sults considering that the NIR and VIS images where obtained non-
synchronously in the Cross-Eyed database.

In order to evaluate the robustness of the proposed methodology,
we also evaluate and then report results on the open-world protocol,
in which the training and test sets have images from different classes.
In other words, there are no images from the same subject in the
training and testing. In this protocol, for both databases, we use the
first half of the subject images for training and the second half for
testing.

The distributions of images and classes in the training and test
sets, as well as the number of genuine and impostors pairs gener-
ated in the test phase for both databases and protocols are detailed in
Table 1.

Table 1. Genuine and impostor matches for the Closed-world (CW)
and Open-world (OW) protocols on Cross- and Intra-spectral sce-
narios. *The comparison with the state-of-the-art methods was per-
formed using the closed-world protocol.
Database Protocol Scenario Train/Test Images(Classes) Gen./Imp. pairs

PolyU CW Cross 8,360(418)/4,180(418) 4,180/4,357,650
PolyU CW Intra 8,360(418)/2,090(418) 4,180/2,178,825
PolyU OW Cross 6,270(209)/6,270(209) 21,945/9,781,200
PolyU OW Intra 6,270(209)/3,135(209) 21,945/4,890,600
Cross-Eyed CW Cross 2,400(240)/1,440(240) 720/516,240
Cross-Eyed CW Intra 2,400(240)/720(240) 720/258,120
Cross-Eyed OW Cross 1,920(120)/1,920(120) 3,360/913,920
Cross-Eyed OW Intra 1,920(120)/960(120) 3,360/456,960

The mean and standard deviation of 30 repetitions for the EER
and decidability figures obtained by the proposed methodology are
shown.

5. RESULTS AND DISCUSSION

In this section, we present and discuss the results observed for the
intra-spectral cross-spectral scenarios, in both the iris and periocular
modalities. We start by providing the results using the closed-world
protocol, in order to establish a baseline with respect to the state-
of-the-art. We also investigate the impact of the feature vector size
and the weights used to merge information from the periocular re-
gion and iris traits. Then, the results using the open-world protocol
are presented, to perceive how robust deep representations can be
obtained. Using the ResNet-50 model, a comparison of the verifi-
cation effectiveness using features extracted from various network
depths is performed. Lastly, we performed a subjective analysis of
the pairwise errors.

In a complementary setting, we explore the advantages yield-
ing from fusing representations of the periocular and iris traits to
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improve performance. Similar to previous works [6, 43, 44] that
applied higher weights in the most discriminating traits, and also
considering that in all our experiments the periocular region re-
ported better results compared to the iris, we decided to use constant
weights of 0.6 and 0.4 respectively for the periocular and iris repre-
sentations when obtaining the fused score by linear combination.

The experiments performed in this work and reported here used
an NVIDIA® Titan Xp GPU with 12GB memory and 3, 840 CUDA
cores, and the tensorflow™ and Keras frameworks were used to im-
plement the CNN models.

5.1. Closed-world protocol

At first, Table 2 and Table 3 report the results observed for verifi-
cation mode, in the cross-spectral and intra-spectral scenarios (NIR
against NIR and VIS against VIS) and using the closed-world proto-
col. In a way similar to Nalla and Kumar [6] and also to guarantee
a fair comparison to their method, the fusion of two spectra on the
PolyU database was carried out by linear combination, using weights
of 0.6 and 0.4, respectively, to the NIR and VIS images. However,
based on the individual spectral results, on the Cross-Eyed database,
we used weights of 0.6 and 0.4 for the VIS and NIR representations,
respectively. Also, on the Cross-Eyed database, we can perceive that
the spectral fusion using iris representations extracted by the VGG16
model reported lower results than using the only VIS spectral infor-
mation. The results show that the representations obtained from NIR
images presented a high EER value, which penalized the fusion of
spectra. Therefore, lower weight for NIR representations may im-
prove the fusion result. The results of those fusions are shown in
Table 2 and Table 3 (VIS and NIR Fusion section).

Anyway, it can be seen that - for both databases - the proposed
approach achieves better results than the state-of-the-art methods,
both in the cross-spectral and in the intra-spectral scenarios even that
the protocol used in this paper is more challenging. For example, in
the PolyU database, we used images from all 209 subjects in the ex-
periments, while the approaches proposed by Wang and Kumar [25],
and Nalla and Kumar [6] used images from only 140 subjects. In the
Cross-Eyed database, based on the number of pairs of intra-class
comparisons reported in the experiments by Wang and Kumar [25],
the authors considered that the database has images obtained non-
synchronously. Images from the Cross-Eyed database were obtained
using a dual sensor with a beam splitter, so the NIR and VIS images
are acquired simultaneously. However, we visually verified that the
images of the same index, i.e., those that should be the same one in
the NIR and VIS, have a random shift in each spectrum. Thus, for
a fair comparison with the state-of-the-art approaches, we report the
results using both protocols, considering the images obtained syn-
chronously and non-synchronously. Note that we collected the state-
of-the-art results from the original papers [6, 25], i.e., we did not
have implemented any approach from these works.

In terms of the CNN architectures, the ResNet-50 model re-
ported lower EER values compared to the VGG16 model in all cases.
However, in some cases, specifically in the PolyU database, the rep-
resentations extracted with the VGG16 model obtained a better sep-
aration of intra- and inter-class distributions, as can be seen in their
Decidability index.

The results show that in Cross-Eyed, the periocular modality
achieves better results than the iris one. However, in the PolyU
database, there is no significant difference between iris and perioc-
ular representations, mainly in the intra-spectral experiments. From
a visual inspection analysis of the pairwise comparison errors (some
examples are shown in Section 5.5), we perceive that in the PolyU

Table 2. Results - closed-world protocol on the PolyU database.
*Using only 140 subjects from a total of 209.
Approach Modality EER (%) Decidability

Cross-Spectral

CNN with SDH [25]* Iris 5.39 2.13
CNN with SDH [25] Iris 12.41 �
VGG16 with SDH [25]* Iris 4.85 �
Proposed VGG16 Iris 2.16± 0.16 5.23± 0.08
ResNet50 with SDH [25]* Iris 7.17 �
Proposed ResNet50 Iris 1.13 ± 0.14 5.17 ± 0.08
Proposed VGG16 Periocular 1.80± 0.21 6.03± 0.20
Proposed ResNet50 Periocular 0.78 ± 0.09 5.97 ± 0.08
Proposed VGG16 Fusion 0.93± 0.10 6.97± 0.13
Proposed ResNet50 Fusion 0.49 ± 0.06 6.75 ± 0.08

VIS vs VIS

Nalla and Kumar [6]* Iris 6.56 �
Proposed VGG16 Iris 1.53± 0.12 6.27± 0.08
Proposed ResNet50 Iris 0.78 ± 0.08 5.91 ± 0.07
Proposed VGG16 Periocular 1.50± 0.16 6.63± 0.21
Proposed ResNet50 Periocular 0.61 ± 0.11 6.57 ± 0.08
Proposed VGG16 Fusion 0.76± 0.10 7.73± 0.14
Proposed ResNet50 Fusion 0.35 ± 0.06 7.44 ± 0.10

NIR vs NIR

Nalla and Kumar [6]* Iris 3.97 �
Proposed VGG16 Iris 1.21± 0.13 6.61± 0.10
Proposed ResNet50 Iris 0.68 ± 0.07 6.05 ± 0.07
Proposed VGG16 Periocular 1.56± 0.19 6.58± 0.21
Proposed ResNet50 Periocular 0.68 ± 0.10 6.59 ± 0.07
Proposed VGG16 Fusion 0.70± 0.11 7.86± 0.17
Proposed ResNet50 Fusion 0.40 ± 0.06 7.54 ± 0.09

VIS and NIR Fusion

Nalla and Kumar [6]* Iris 2.86 �
Proposed VGG16 Iris 1.01± 0.09 6.81± 0.08
Proposed ResNet50 Iris 0.59 ± 0.08 6.29 ± 0.07
Proposed VGG16 Periocular 1.36± 0.15 6.79± 0.21
Proposed ResNet50 Periocular 0.56 ± 0.10 6.82 ± 0.08
Proposed VGG16 Fusion 0.63± 0.10 8.05± 0.16
Proposed ResNet50 Fusion 0.35 ± 0.05 7.75 ± 0.10

database, some uncontrolled conditions present in the images such
as pose, eye gaze, and rotation may penalize the quality of the pe-
riocular representations. These conditions are more controlled in
the cross-eyed images. Also, Cross-Eyed images are smaller than
PolyU images, so the iris region is even smaller, and the periocular
images are better centralized based on the iris region in the Cross-
Eyed and not in the PolyU database. Nevertheless, Cross-Eyed im-
ages present a more significant difference in color and illumination
among classes, which makes them more distinct and may explain the
better results in VIS against VIS comparisons than NIR against NIR.

5.2. Feature size and fusion weights analyses

In this section, we analyze and discuss the impact of feature vector
size and the weights used for the fusion of the iris and periocular
region representations.

As state in Section 3, we choose the feature size of 256 based on
the experiments and results reported by Luz et al [18]. Therefore, we
also performed some experiments creating new models with differ-
ent sizes in the last layer before the softmax one, i.e., the layer used
to extract the features (representations). The results of the fusion
of iris and periocular representations extracted with these models
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Table 3. Results - closed-world protocol on the Cross-Eyed
database. *same protocol used by Wang and Kumar [25].
Approach Modality EER (%) Decidability

Cross-spectral

CNN with SDH [25] Iris 6.34 2.54
VGG16 with SDH [25] Iris 3.13 �
Proposed VGG16* Iris 5.58± 0.59 3.87± 0.16
Proposed VGG16 Iris 6.76± 0.56 3.58± 0.14
ResNet50 with SDH [25] Iris 6.11 �
Proposed ResNet50* Iris 2.45 ± 0.25 4.73 ± 0.09
Proposed ResNet50 Iris 3.07 ± 0.38 4.49 ± 0.09
Proposed VGG16* Periocular 2.35± 0.28 5.61± 0.20
Proposed VGG16 Periocular 3.18± 0.42 5.19± 0.21
Proposed ResNet50* Periocular 1.45 ± 0.24 4.73 ± 0.09
Proposed ResNet50 Periocular 1.95 ± 0.35 5.34 ± 0.12
Proposed VGG16* Fusion 1.86± 0.19 5.78± 0.11
Proposed VGG16 Fusion 2.66± 0.29 5.31± 0.12
Proposed ResNet50* Fusion 1.06 ± 0.15 6.29 ± 0.11
Proposed ResNet50 Fusion 1.40 ± 0.26 5.93 ± 0.12

VIS vs VIS

Proposed VGG16 Iris 3.66± 0.39 4.85± 0.16
Proposed ResNet50 Iris 2.47 ± 0.42 5.12 ± 0.13
Proposed VGG16 Periocular 2.60± 0.40 5.57± 0.21
Proposed ResNet50 Periocular 1.70 ± 0.37 5.66 ± 0.13
Proposed VGG16 Fusion 1.94± 0.29 6.15± 0.16
Proposed ResNet50 Fusion 1.17 ± 0.25 6.39 ± 0.13

NIR vs NIR

Proposed VGG16 Iris 7.31± 0.91 3.46± 0.18
Proposed ResNet50 Iris 2.74 ± 0.34 4.72 ± 0.08
Proposed VGG16 Periocular 2.97± 0.46 5.36± 0.23
Proposed ResNet50 Periocular 1.78 ± 0.39 5.54 ± 0.13
Proposed VGG16 Fusion 2.40± 0.35 5.36± 0.12
Proposed ResNet50 Fusion 1.31 ± 0.24 6.14 ± 0.12

VIS and NIR Fusion

Proposed VGG16 Iris 3.69± 0.39 4.65± 0.15
Proposed ResNet50 Iris 2.18 ± 0.31 5.25 ± 0.10
Proposed VGG16 Periocular 2.44± 0.43 5.70± 0.22
Proposed ResNet50 Periocular 1.54 ± 0.30 5.76 ± 0.13
Proposed VGG16 Fusion 1.92± 0.29 6.09± 0.14
Proposed ResNet50 Fusion 1.11 ± 0.20 6.47 ± 0.12

are presented in Table 4. Luz et al. [18] stated that for the cosine
distance metric, high dimensional vectors resulted in better perfor-
mance. Conversely, our results show that representations extracted
with the ResNet50 model achieve lower values of EER when the fea-
ture vector is smaller. The same occurs in the VGG16 model features
in the PolyU database. Regarding the decidability index, the size of
the feature vector does not show to have much impact. These re-
sults may be related to the fact that both models can generate sparse
feature vectors, as stated by Wang and Kumar [25]. Thus a bigger
feature vector will not always improve the performance of the bio-
metric system. Here, we decided to keep a feature vector size of 256
because it keep a trade-off between EER and Decidability.

As described in Section 3, similar to some approaches [6, 43, 44]
in the literature and based on the individual performance in our ex-
periments, we choose weights of 0.6 and 0.4 for the periocular and
iris fusion, respectively. Nevertheless, in this section, we evaluated
the impact of different iris and periocular weights on the trait rep-
resentations fusion in the cross-spectral scenario, for both models.
Indeed, we impose wp 2 [0, 1], such that wi + wp = 1, where wp

Table 4. Feature vector size results fusing iris and periocular region
traits on Cross-spectral scenario.

Model Feat. Size PolyU Cross-Eyed

EER (%) Decidability EER (%) Decidability

ResNet50

1024 0.54± 0.09 6.76± 0.10 1.61± 0.25 5.93± 0.13
512 0.56± 0.06 6.73± 0.08 1.35± 0.22 6.00± 0.11
256 0.49± 0.06 6.75± 0.08 1.40± 0.26 5.93± 0.12
128 0.43± 0.05 6.70± 0.08 1.35± 0.30 5.99± 0.13
64 0.37± 0.07 6.50± 0.08 1.26± 0.22 5.93± 0.15
32 0.30± 0.05 6.05± 0.15 1.41± 0.27 5.65± 0.16

VGG16

1024 0.99± 0.10 6.85± 0.08 2.68± 0.28 5.29± 0.11
512 0.92± 0.12 6.94± 0.11 2.53± 0.38 5.35± 0.14
256 0.93± 0.10 6.97± 0.13 2.66± 0.29 5.31± 0.12
128 0.80± 0.12 7.03± 0.10 2.78± 0.33 5.28± 0.10
64 0.73± 0.11 6.93± 0.11 2.67± 0.37 5.23± 0.15
32 0.69± 0.10 6.46± 0.07 2.79± 0.47 4.98± 0.17

and wi stand for the periocular and iris weights, respectively. The
results are reported in Figure 3.

Even though the values of EER are lower using features ex-
tracted with the ResNet50 model, we can observe a similar behaviour
regarding the weight difference in both databases for both models.
That is, when the weights are appropriately combined the best results
are achieved. We can also observe that the periocular trait has more
impact on the Cross-Eyed database than on the PolyU database. We
also note that on the PolyU database, in some cases, fusion with a
higher iris weight (wi = 0.6 and wp = 0.4 using VGG16 features)
may achieve a lower value of EER.

5.3. Open-world protocol

Also, the experimental results observed for the open-world scenario
are presented in Table 5 and Table 6 for the PolyU and Cross-Eyed
databases, respectively. Notice that this protocol is more challenging
since there is no sample of the test classes in the training set. Another
factor that makes it more difficult is that compared to the closed-
world protocol, fewer images are available for model training, and
there are more images on the test set increasing the pair of genuine
and imposter comparisons.

Table 5. Verification in the open-world protocol on the PolyU
database.
Approach Modality EER (%) Decidability

Cross-spectral

Proposed ResNet50 Iris 12.01± 0.78 2.44± 0.08
Proposed ResNet50 Periocular 8.02± 0.65 3.00± 0.11
Proposed ResNet50 Fusion 6.01± 0.39 3.35± 0.08

VIS vs VIS

Proposed ResNet50 Iris 4.30± 0.24 3.86± 0.07
Proposed ResNet50 Periocular 3.94± 0.27 4.14± 0.09
Proposed ResNet50 Fusion 2.61± 0.11 4.71± 0.06

NIR vs NIR

Proposed ResNet50 Iris 4.00± 0.24 3.88± 0.08
Proposed ResNet50 Periocular 4.00± 0.26 4.10± 0.10
Proposed ResNet50 Fusion 2.55± 0.17 4.68± 0.10
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VGG16 Features ResNet50 Features

Fig. 3. Periocular weights impact on the traits fusion in the cross-spectral scenario on the PolyU (top row) and Cross-Eyed (bottom row)
databases.

Table 6. Results - open-world protocol on the Cross-Eyed database.

Approach Modality EER (%) Decidability

Cross-spectral

Proposed ResNet50 Iris 8.87± 0.77 2.85± 0.11
Proposed ResNet50 Periocular 4.39± 0.44 3.85± 0.11
Proposed ResNet50 Fusion 3.51± 0.32 4.17± 0.07

VIS vs VIS

Proposed ResNet50 Iris 4.25± 0.35 4.01± 0.10
Proposed ResNet50 Periocular 3.41± 0.38 4.41± 0.11
Proposed ResNet50 Fusion 2.57± 0.26 4.97± 0.09

NIR vs NIR

Proposed ResNet50 Iris 5.04± 0.43 3.63± 0.12
Proposed ResNet50 Periocular 3.51± 0.40 4.38± 0.12
Proposed ResNet50 Fusion 2.75± 0.28 4.83± 0.10

To perceive the differences in performance, a comparison of the
results using closed- and open-world is shown with the Receiver
Operating Characteristic (ROC) curve in Figure 4. Even though a
fully fair comparison between closed- and open-world protocols is
not feasible because the number of subjects used for learning is dif-
ferent, it is noticeable that the open-world protocol reported worse
performance in all modes compared to the closed-world protocol.
Nevertheless, we conclude that fusing the ocular and iris represen-

tations also leads to promising results in the open-world protocol,
given that the observed decidability was higher than three for both
databases considered.

5.4. ResNet-50: Performance vs. Network Depth

Having concluded that the ResNet-50 yields to the optimal results
in terms of EER in our experiments, our next goal was to perceive
how the verification performance varies with respect to the depth
of the layer from where representations are taken. In this experi-
ment, we considered all the convolution layers with stride equal to
2, resulting in four different depths to be tested: 12, 24, 42 and 50
layers. For each one of the four possibilities (depths), the same mod-
ifications described in the methodology section were made, adding
a fully-connected layer with 256 neurons and a layer with a softmax
cross-entropy loss function. The verification results using the dif-
ferent depths are reported in Table 7 for the PolyU and Cross-Eyed
databases.

It can be observed that the largest degradation of the results
occurred when using shallow models occurs in the Cross-Eyed
database. In all cases, the VIS against VIS comparison reports the
best results and it is the scenario where it presents the lowest degra-
dation of the response in the different depths of the model.

As shown in the NIR against NIR and Cross-spectral results in
the Cross-Eyed database, some EER values in the fusion of traits is
higher than the ones using information from the periocular region
only. This behavior is due to the weight used in the fusion of fea-
tures where the low discrimination of the iris region penalizes and
degrades the fused matching score, as we discuss in Section 5.2.
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Fig. 4. ROC curves comparing the closed- and open-world protocols on the PolyU (top row) and Cross-Eyed (bottom row) databases.

Table 7. EER values observed for different depths (trainable param-
eters) of ResNet50 architecture, using the closed-world protocol.

Spec. Trait 12 layers 24 layers 42 layers 50 layers
(26M) (14.5M) (15.6M) (24.1M)

PolyU

VIS Iris 3.21± 0.16 2.29± 0.15 1.60± 0.10 0.78± 0.08
VIS Perioc. 3.84± 0.14 3.17± 0.18 2.17± 0.12 0.61± 0.11
VIS Fusion 1.66± 0.06 1.41± 0.07 1.06± 0.11 0.35± 0.06
NIR Iris 3.55± 0.18 2.36± 0.11 1.46± 0.10 0.68± 0.07
NIR Perioc. 4.16± 0.17 3.39± 0.18 2.27± 0.14 0.68± 0.10
NIR Fusion 2.13± 0.08 1.56± 0.08 1.09± 0.10 0.40± 0.06

Cross Iris 6.39± 0.41 4.50± 0.23 3.09± 0.19 1.13± 0.14
Cross Perioc. 5.38± 0.20 4.04± 0.17 2.71± 0.14 0.78± 0.09
Cross Fusion 2.95± 0.15 2.07± 0.13 1.41± 0.09 0.49± 0.06

Cross-Eyed

VIS Iris 4.77± 0.38 3.29± 0.26 2.16± 0.34 2.47± 0.42
VIS Perioc. 6.34± 0.36 3.70± 0.35 1.90± 0.23 1.70± 0.37
VIS Fusion 3.78± 0.22 1.94± 0.16 1.25± 0.18 1.17± 0.25
NIR Iris 20.24± 0.70 16.28± 0.66 8.78± 0.56 2.74± 0.34
NIR Perioc. 7.28± 0.35 4.08± 0.32 1.88± 0.23 1.78± 0.39
NIR Fusion 7.78± 0.30 4.90± 0.33 2.03± 0.23 1.31± 0.24

Cross Iris 20.88± 0.74 15.91± 0.60 8.12± 0.63 3.07± 0.38
Cross Perioc. 7.53± 0.38 4.17± 0.38 2.31± 0.31 1.95± 0.35
Cross Fusion 8.29± 0.46 4.43± 0.29 2.14± 0.24 1.40± 0.26

The experiments performed by Nguyen et al. [23] show that fea-
tures extracted from intermediate layers of the networks achieved
better results compared to deep layer representations. However, our

results report lower EER rates using features extracted from deeper
layers. It is important to point out that in [23] the ResNet152 model
(i.e., a deeper model than ResNet50, used in our work) was em-
ployed. The same behavior can be observed in work by Henandez-
Diaz et al. [31], were the authors stated that features extracted from
the intermediate layers of the ResNet-101 model reported the best re-
sults. Thus, the deepest layer reported in this work is approximately
at the same depth as the intermediate layer reported by Nguyen
et al. [23] and by Hernandez-Diaz et al. [31]. In another work,
Hernandez-Diaz et al. [46] reported that using the ResNet50 model,
representations from the intermediate layers achieved better results
in the UBIPr Periocular database [47]. Oppositely, in this work, pe-
riocular representations extracted from the last layer of the ResNet50
model achieved the best results. Notice the UBIPr database has some
larger images (from 501 ⇥ 401 pixels (8m) to 1001 ⇥ 801 (4m))
than PolyU and Cross-Eyed databases and also the periocular region
is more extensive, containing eyebrows information, which can ex-
plain why a shallow model can extract more discriminant features
from the intermediate layers, in this case.

As described in [25], a disadvantage of the VGG16 model, when
compared to ResNet, is its larger number of trainable parameters
(98.6M, when compared to their CNN with SD methodology 0.6M).
As before stated, in our case the best responses were observed when
using the ResNet50 model, which after the modifications has 24.1M
(four times lower compared to VGG16). As shown in Table 7,
smaller networks in terms of depth lead to increasingly high losses in
performance, however also decreasing nearly 10M training parame-
ters, which can be an interesting solution for embedded systems and
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other cases where the computational complexity might be a concern.
The ResNet with 12 layers has more trainable parameters than the
other models, since it considers an input image of 28 ⇥ 28 pixels
and 128 filters. In addition, its convolutional part is connected with
a fully connected layer containing 256 neurons added for reduction
of feature dimensionality.

5.5. Subjective evaluation

In order to provide some insight about the weaknesses of the so-
lutions proposed in this paper, and also to provide a basis for sub-
sequent improvements in the technology, this section highlights
some notable cases of image pairwise comparisons that led to the
best/worst performance (using the closed-world protocol). Results
are shown in Figure 5, grouped into the worst genuine (when the
system rejected a true matching) and the best impostors (when the
system accepted a false matching) comparisons.

Worst Genuine

Best Impostor

Fig. 5. Pairwise comparison errors in the VIS against VIS scenario
on Cross-Eyed (left) and PolyU (right) databases. Periocular and iris
matching modalities are presented at Top and Bottom rows, respec-
tively.

Although Figure 5 only shows VIS images, we noticed that pose
and gaze are factors that can lead to matching errors also in NIR
against NIR and cross-spectral scenarios. We observe that there
were also confusions in images of the same subject but from dif-
ferent classes (left and right eyes) no matter the spectral scenario.
Thus, we believe that it is possible to improve the recognition sys-
tem accuracy using information based on the angle of the periocular
region images and also performing a preprocessing to determine the
left and right eyes (i.e., a soft biometrics process). Also, based on the
pairwise comparison errors, we can state that another factor that may
improve system accuracy is the process of centralization/resizing of
the periocular image based on the iris region size and location, sim-
ilar to the method proposed by Hernande-Diaz et al. [46].

6. CONCLUSION

In this work we performed extensive experiments on two databases
for both cross-spectral and intra-spectral ocular recognition. A strat-
egy using methodologies from the literature was applied to reach
new state-of-the-art results on both databases. It shows that there is
still room for improvement by applying and merging known method-
ologies in the literature to surpass cross-spectral ocular recognition.

We also discuss how deep representations from the iris and ocu-
lar region (extracted using VGG16 and ResNet50 architectures) can
be fused to improve the recognition performance on the ambitious
cross-spectral recognition problem. We used CNN models that were
pre-trained for face recognition, and fine-tuned each one for a spe-
cific biometric modality: iris and periocular. A single model for
each trait was trained for the feature extraction using NIR and VIS
images. The matching phase, on a verification mode, was performed
using the cosine metric. In order to provide a fair comparison with
the state-of-the-art approaches, we used the closed-world protocol.
However, we also reported results on the open-world protocol to
evaluate the robustness of the proposed methodology.

Our experiments showed that the models learned on the ResNet-
50 architecture reported best results in terms of EER than its VGG
counterpart, both in the PolyU and Cross-Eyed databases. Interest-
ingly, we note that even this simple processing chain was observed
to advance the state-of-the-art results in both datasets.

Overall, in most of the experiments, features taken from the pe-
riocular region were observed to provide better performance than iris
features, with the fusion of these two modalities improving the EER
value and decidability index than the best individual trait.

In a complementary way, we analyzed the impact of the feature
vector size and the Iris and Periocular weights used for trait repre-
sentation fusion, and how the recognition performance varies with
respect to the depth of the models used for feature extraction, i.e., by
using intermediate layers of the ResNet50 model to take the feature
sets used in the matching phase.

Finally, subjective analysis of the best/worst false genuine and
true impostors image pairwise comparisons was also performed,
showing that factors such as angles of image capture may interfere in
the accuracy of the recognition system. In this direction, we plan for
future works to investigate how to build representation taking into
account eye gaze and pose.
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Schwartz, and D. Menotti, “A robust real-time automatic license plate recognition
based on the yolo detector,” in 2018 International Joint Conference on Neural
Networks (IJCNN), July 2018, pp. 1–10.

[14] A.G. Hochuli, L.S. Oliveira, A.S. Britto Jr, and R. Sabourin, “Handwritten digit
segmentation: Is it still necessary?,” Pattern Recognition, vol. 78, pp. 1 – 11,
2018.

[15] R. Laroca, L. A. Zanlorensi, G. R. Gonçalves, E. Todt, W. R. Schwartz, and
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