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Abstract: In the context of less constrained biometrics recognition, the use of 
information from the vicinity of the eyes (periocular) is considered with high 
potential and motivated several recent proposals. In this paper, we focus on two 
factors that are known to degrade the performance of periocular recognition: 
varying illumination conditions and subjects pose. Hence, this paper has three 
major purposes: 1) describe the decreases in performance due to varying 
illumination and subjects poses; 2) propose two techniques to improve the 
robustness to these factors; 3) announce the availability of an annotated dataset 
of periocular data (UBIPosePr), where poses vary in regular intervals, turning it 
especially suitable to assess the effects of misalignments between camera and 
subjects in periocular recognition. 
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1 Introduction 

Biometrics is considered a successful case of pattern recognition systems and is used for 
multiple purposes: authentication in restricted areas, attendance record in office premises, 
citizenship recognition and forensics. Among different possibilities, the iris trait is one of 
the most popular and several works were published in this scope, either focused in the 
segmentation, encoding, image enhancement and fusion strategies (e.g., Srividya et al., 
2009; Jia et al., 2012; Thangasamy and Latha, 2012). However, when it comes to 
usability, systems still operate in constrained data acquisition scenarios, which justifies 
the growing efforts in strategies to reduce the constraints of the data acquisition phase 
[non-cooperative systems (Savvides et al., 2010; Selvan and Sulochana, 2010; Du and 
Yang, 2012)]. The main hurdles are the decreases in data quality due to large  
camera-subject distances and its non-uniformity in terms of factors such as translation, 
rotation, scale, pose and illumination. In this context, the term periocular biometrics has 
emerged and refers to the recognition using information from the “facial region in the 
immediate vicinity of the eye” (Park et al., 2011). Park et al. (2012) discussed the 
challenges of recognition in non-ideal data and the impact of camera-subject distance was 
reported by Bharadwaj et al. (2010). 

The work described in this paper can be summarised as follows: 

1 we assess the decreases in performance with respect to two criteria: lighting 
conditions and subjects poses, regarded as covariates of performance 

2 propose methods to compensate for these, consistently improving the recognition 
effectiveness. 

For such, we acquired and manually annotated a dataset (UBIPosePr), that contains 
subjects with varying poses and under both natural and artificial varying light sources. 

These are the remaining parts of this paper: Section 2 overviews the related literature. 
The description of the pose and illumination problems appears in Section 3. Section 4 
describes the technique that compensates for illumination and Section 5 the technique 
used to compensate for pose. A description on the newly acquired dataset is found in 
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Section 7. The experimental results and corresponding discussion are given in Section 8. 
Finally, the paper is concluded in Section 9. 

2 Related work 

For comprehensibility, our analysis of the related work was divided into three parts: 

1 periocular biometrics 

2 illumination compensation methods 

3 pose estimation/compensation techniques. 

2.1 Periocular biometrics 

The use of other traits in the ocular area apart the iris has been the scope of different 
research works (e.g., Juhola et al., 2012). 

Park et al. (2009) highlighted the advantages of using the periocular region, when 
compared to the exclusive use of the iris. The periocular texture was characterised by 
local binary patterns (LBP), histograms of oriented gradients (HOG) and scale invariant 
feature transform (SIFT). Variations in performance with respect to the inclusion of 
eyebrows in the region-of-interest were also reported. In a subsequent work (Park et al., 
2011), authors focused on other factors that affect performance, such as segmentation 
inaccuracies, partial occlusions and pose. Experiments were carried in the FRGC 2.0 
database (NIST, http://www.frvt.org/FRGC/). Having soft biometric purposes, Lyle et al. 
(2010) classified gender and ethnicity from periocular data, using LBP features to feed a 
support vector machine. A noteworthy conclusion was that effectiveness yielded when 
using exclusively periocular data is comparable to the obtained by using the entire face. 
Woodard et al. (2010) studied the effect of fusion techniques on periocular and iris data 
on non-ideal scenarios, characterised by occluded irises, motion and spatial blur, poor 
contrast and illumination artefacts, having concluded that fusion at the score level 
improves performance. Simpson et al. (2010) applied genetic and evolutionary 
computations (GEC) to the feature selection problem, having compared two GEC-based 
Type-II feature extraction methods: a steady-state genetic algorithm and an elitist 
estimation of distribution algorithm. The latter not only optimised accuracy but also 
minimised the dimensionality. 

Bharadwaj et al. (2010) used visible light data, fusing of a global matcher (spatial 
envelope) and circular linear binary patterns. Also, authors investigated the effect of 
acquisition distance on performance, having used the UBIRIS.v2 database (Proença et al., 
2010). Aiming at robustness, Miller et al. (2010) assessed the linear correlation between 
image quality and performance. Recently, Park et al. (2012) handled non-ideal ocular 
data and discussed the challenges around deformations and varying illumination in 
samples. To overcome these issues, authors proposed probabilistic deformation models, 
having used a maximum-a-posteriori estimation filter in the fusion of HOG, SIFT-based 
and probabilistic density model based scores, yielding a technique that was favourably 
compared to the non-weighted score level fusion. Hollingsworth et al. (2012) compared 
the recognition ability of humans and machines on periocular data, concluding that – at  
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least – automated strategies have similar effectiveness to humans. Juefei-Xu et al. (2011) 
discussed the use of local descriptors along with pose correction and illumination 
normalisation techniques. The experiments were carried in the FG-NET database. A 
similar study of the same authors is reported in Juefei-Xu and Savvides (2012). Woodard 
et al. (2011) represented skin texture and colour separately, fusing both types of 
information at subsequent processing phases. Finally, Crihalmeanu and Ross (2011) 
fused periocular recognition techniques to methods that describe the sclera texture and 
vasculature patterns. 

2.2 Illumination compensation 

A relatively reduced number of works addressed the effect of lighting conditions in 
periocular recognition performance. Even though, it is considered that non-uniform 
illumination over a sample, or of different lighting conditions for image pairings, 
significantly affects performance. Juefei-Xu et al. (2011) and Juefei-Xu and Savvides 
(2012) used anisotropic diffusion techniques, having observed improvements in 
performance, even though at expenses of a substantial overload in computational 
requirements. Oppositely, in the field of face recognition, a large number of research 
works on this topic can be found: Xie et al. (2011) normalised illumination on high scale 
components along with slight adjustments on low scale features. Du and Ward (2010) 
handled the problem of side lighting effects by adaptive region-based image 
preprocessing techniques. After wavelet decomposition, approximation coefficients feed 
a region-based histogram equalisation module, while detail coefficients were modified 
using region based edge enhancement, yielding performance levels that match those 
reported by Chen et al. (2006) and Xie et al. (2008). More recently, Cheng et al. (2010) 
compared methods based on self-quotient image (SQI) (Wang et al., 2005), dynamic 
morphological quotient image (He et al., 2007) and different smoothing filters, having 
reported that the latter kind of techniques outperform. 

2.3 Pose estimation and compensation 

Storer et al. (2009) used a 3D morphable appearance model to estimate yaw and pitch 
angles for human heads, having authors reported estimation errors of 5 degrees at most. 
Liu et al. (2009) used pose-based non-negative matrix factorisation and eigen-analysis to 
estimate pose, reporteing average errors for yaw and tilt around 12 degrees. A multiphase 
head pose estimation was given by Wu and Trivedi (2008): they used Gabor features and 
its projections on subspaces formed by principal component analysis (PCA), kernel PCA, 
Fisher discriminant analysis (DA) and Kernel DA, that fed a nearest neighbour matching 
phase. Then, the estimation was refined using bunch graph similarity measures. Kim  
et al. (2005) used surface curvature and the tetrahedral structure of nose to estimate pose. 
Zhao and Gao (2006) obtained an estimate of pose based in elastic energy models, in the 
symmetry of human faces and Hooke’s law of springs. A pose correction technique for 
local feature-based face authentication was reported by González-Jiménez et al. (2006), 
segmenting the prominent facial features based on the angular second moment 
description. Dahmane et al. (2010) detected the symmetrical parts of faces, from where 
yaw and pitch angles were inferred. 
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2.4 Non-orthogonal biometric recognition 

In the case of facial recognition, several works concerned about the recognition of  
non-frontal or profile images: Zheng et al. (2009) recognised multi-view facial images 
under the unified Bayes theoretical framework, having formulated the problem as an 
optimisation problem of minimising an upper bound of the Bayes error. Demirel  
and Anbarjafari (2008) proposed a computational effective method based in probabilities 
distribution functions of pixels intensities in different colour speces. They were  
used as feature vectors by minimising the Kullback-Leibler distance between a  
sample and templates stored in the database. Singh et al. (2007) relied in the notion of 
mosaic and aligned deviated to frontal data by a hierarchical registration algorithm  
based on neighbourhood properties. Multi-resolution splining blend the side profiles  
with the frontal image, thereby generating a composite face image that is used in 
recognition. Wolf et al. (2011) used patch-based LBP and represented samples by a set of 
similarities to templates (designated background samples) and to prelearned classifiers  
of different types (linear discriminants and support vector machines). Relying on  
facial landmarks that are deemed to be more robust to variations in pose, Cheung et al. 
(2008) proposed an algorithm based on the elastic bunch graph matching algorithm, 
having concluded about its robustness in case of deviations up to 30 degrees in absolute 
value. 

Constituting a much more matured field of knowledge and sharing the  
region-of-interest where recognition is performed, iris biometrics techniques are closely 
related to periocular recognition. Being a small moving target, appropriate strategies to 
handle off-angle iris data were the scope of various works, where most techniques 
estimate gaze by 3D projection techniques, maximising the response of the Daugman’s 
integro-differential operator (e.g., Dorairaj et al., 2005; Schmid et al., 2010) or the length 
of the axes of an iris bounding ellipse (e.g., Zuo and Schmid, 2009). In a different 
paradigm, Abhyankar et al. (2005) designed a bi-orthogonal wavelet network, 
repositioned to account for deviations. Schuckers et al. (2007) used an angular 
deformation calibration model. The angular deformations are modelled, and calibration 
parameters are calculated under a supervised machine learning technique, being finally 
used in the projection onto the plane closest to the base plane. Chou et al. (2010) 
proposed a circle rectification method, estimated using the centre and axes of the 
segmented pupillary boundary. Then, data is stretched, so that both axis have the same 
length. 

When it comes to periocular biometrics, the most relevant works were due to 
Schuckers et al. (2007) and Abhyankar et al. (2005). A bi-orthogonal wavelet network 
was trained from a learning set. Probes were repositioned for different angles and their 
Euclidean distance to gallery data obtained, considering the minimum distance as the 
matching score. Also, authors worked on two other approaches: 

1 gaze was estimated using Daugman’s integro-differential operator as the objective 
function 

2 an angular deformation calibration model was created and calibrated, so to estimate a 
frontal image used subsequently. 
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3 Problem description 

The robustness of biometric recognition to non-ideal conditions motivated numerous 
research works, usually regarding such acquisition conditions as covariates that affect 
performance. Even though periocular biometrics appears to be particularly robust to such 
covariates, the results given in Figure 1 show an evident decrease in performance when 
deviations in pose occur. We plot three receiver operating characteristics curves, when 
matching frontal gallery data to frontal probes (‘frontal’ line), to slightly deviated 
(‘deviated’ line) and notoriously deviated probes (‘more deviated’ line). Additional 
details about these experiments are given here (Padole and Proença, 2012). 

Figure 1 Motivation for the work described in this paper: the performance of periocular 
recognition in result of variations in pose remarkable decreases, in direct proportion to 
the magnitude of deviations (see online version for colours) 

 

Source: Padole and Proença (2012) 

Also, even considering that the feature descriptors usual in periocular recognition (LBPs, 
HOGs and SIFT) tend to be invariant to uniform (global) changes in illumination, they 
are not invariant to non-uniform (local) changes. Plus, multiple light sources in the 
environment and the periocular morphology might easily lead to the existence of umbra 
and penumbra regions, which dramatically change the appearance of the periocular skin 
texture. According to these motivations, we tested two different techniques to 
compensate for lighting conditions: 

1 homomorphic filters (Gonzalez and Woods, 1992), selected over anisotropic 
diffusion due of their lower computational complexity 

2 the SQI (Wang et al., 2004), selected among a family of quotient-image variants, due 
to the fact of being possible to obtain from a single image. 
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In order to compensate for pose, a method based on projective transforms is proposed. 
When acquiring with a perspective camera, projective transform (also called a 
homography or collineation) preserves both singularities and multiplicities and the 
corresponding matrix can be derived from 3D angles associated with pose variations. A 
contribution of this work is to deem the optimal projective transform matrix from a set of 
landmarks: in order to align probes to gallery data as much as possible. A high-level 
perspective of the proposed workflow is depicted in Figure 2. At this point, it should be 
stressed that the novelty of the proposed technique is not the use of projective transforms 
to compensate for deviations, but the method that finds the optimal transform: we rely 
exclusively on the eye corners, which are the most easily distinguishable landmarks in the 
periocular region. Hence, when using exclusively an estimate of both eye-corners, we 
define a quadrilateral that is used as goodness function among different possibilities for 
projective transforms. 

Figure 2 Workflow diagram of the proposed techniques to compensate for illumination 
conditions and varying poses 

 

4 Illumination compensation 

Even in non-controlled acquisition environments, a reasonable assumption is that the 
illumination varies slowly across the image, in opposition to objects’ reflectance that 
varies much more rapidly. This gave birth to the idea of a frequency-domain non-linear 
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filter that reduces intensity variations across the image while highlighting detail. 
Homomorphic filters are frequently used in different image processing applications, 
especially due to their low computational complexity, which was one of the main reasons 
to select them for the scope of this work. A homomorphic filtering operation starts by 
expressing an image by the product of illumination I and reflectance R. It is given by: 

( ) ( )( )1 1( , ) exp − −= ⋅ + ⋅h f fI x y F H I F H R  (1) 

where F(.) denotes the Fourier transform, F–1 its inverse, If = F(ln(I + 1)) is the image 
represented in the frequency domain and Rf = F(ln(R + 1)) denotes the reflectance in the 
frequency domain. H is the Butterworth high pass filter and Ih(x, y) is the filtered image. 
Also, we tested a variation of the widely used quotient image technique, described by 
Shashua and Riklin-Raviv (2001). In this case, the SQI, as proposed by Wang et al. 
(2004), was chosen, due to the fact of obtaining an illumination normalised version from 
a single image, which is of obvious interest for our purposes. The point-by-point 
proportion between an image and its smoothed version gives the SQI: 

( , )( , ) ,
( , )* ( , )

=
I x yQ x y

F x y I x y
 (2) 

where I(x, y) is the original image, F(x, y) is a smoothing filter and ‘*’ is the convolution 
operator. Q(x, y) is invariant to illumination under the assumptions that the strength and 
direction of the light sources are uniform across the image and the normal to the object is 
locally uniform. Additional details can be found at Wang et al. (2004). 

5 Pose compensation 

When an object changes its position in the scene, a homography maps such 
transformation that might include changes in scale, rotation, translation and sheer. Hence, 
the deflection in any point with respect to the world coordinate system can be 
transformed to image plane using the projective transform represented in homogeneous 
notation: 

11 12 13

21 22 23

31 32 33

,
1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x h h h X
λ y h h h Y

h h h Z
 (3) 

where λ = f/Z, being f the focal length, X, Y and Z the world coordinates and x, y and z the 
image coordinates (Paul, 1989). When the pose of a given object varies, the associated 
transformation in the world coordinate system is mapped into the image, in order to 
recover the pre-distortion state. The 2D projective mapping has 8 degrees-of-freedom, 
and these values can be determined from a minimum of four pairs of point 
correspondences, that constitute the corners of a quadrilateral in the reference and 
distorted images. Let ( , ) ( , ),′ ′→k k k kx y x y  k = {1, 2, 3, 4} denote such correspondences, 
exemplified in Figure 3. A projective transformation matrix H can be determined 
uniquely if and only if no three points are collinear. 
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Figure 3 Illustration of landmarks correspondences in the reference and distorted samples 

 

Notes: Here, only one of the corners of the quadrilateral changed its position. A 
projective transform H and its inverse are able to map between both samples. 

The four landmarks correspondences can be combined in matrix form: 

1 1 1 1 1 1 1

1 1 1 1 1 1 1

2 2 2 2 2 2 2

2 2 2 2 2 2 2

3 3 3 3 3 3 3

3 3 3 3 3 3 3

4 4 4 4 4 4 4

4 4 4 4 4 4 4

1 0 0 0
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1 0 0 0
0 0 0 1

1 0 0 0
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1 0 0 0
0 0 0 1

′ ′ ′− − −⎡
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⎢ ′ ′ ′− − −
⎢ ′ ′ ′− − −⎢
⎢ ′ ′ ′− − −

′ ′ ′− − −
′ ′ ′− − −
′ ′ ′− − −⎣

x y x x x y x
x y y x y y y

x y x x x y x
x y y x y y y

x y x x x y x
x y y x y y y

x y x x x y x
x y y x y y y

0

⎤
⎥
⎥
⎥
⎥
⎥ =⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

hH  (4) 

which has the form Ah = 0. The solution h is the (one dimensional) null space of A and 
corresponds to the projective transform H in vector form. 

Figure 4 Location of landmarks (eye centre and eye corners) in the periocular region, defining a 
region of interest with respect to eye’s centre and width (see online version for colours) 
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6 Proposed optimisation procedure 

Empirically, we observed that even small errors in the location of landmarks 
correspondences have a large effect in the projective transform found and in the resulting 
image compensated for pose. Hence, we devised an alignment process composed by three 
main phases: 

1 At first, we relied on eye-corners, which are known to be among the most 
distinguishable landmarks inside the periocular region [a detection method proposed 
by Santos and Proença (2011) was used]. 

2 The eye centre ec was estimated from the geometric mean of both corners.  
The distance between eye-corners is used to draw a rectangle of dimensions  
0.6 ew × 1.2 ew, centred at ((x1 + x2) / 2, (y1 + y2) / 2) and then shifted by (0, 0.1 ew), 
being (x1, y1) and (x2, y2) the coordinates of both eye-corners. These values were used 
to define the vertices of a quadrilateral, with dimensions proportional to the eye 
width, as shown in Figure 4. 

3 An optimisation process was carried out by slightly deviating some vertices of this 
quadrilateral, obtaining successive values of a cost function that under minimisation 
yielded the optimal projective transform. 

For each probe, several projective transforms were evaluated by a cost function that 
measures the similarity between gallery data and the transformed probe. Then, the 
projective transform that attains maximal similarity corresponds to the optimal alignment 
procedure between. Similarity was measured in different feature subspaces, using the 
Chi-square distance between gallery and probe feature vectors. A cohesive perspective of 
the optimisation procedure is given in Figure 5. 

Formally, let Ai = (xi, yi) be a point at column x and row y. R(Ai, Aj, Ak, Am) is a 
polygon with vertices (Ai, Aj, Ak, Am) over the eye region. Upon the constraints that yi = yj, 
xj = xk, yk = ym and xm = xi, this region defines a rectangle centred at the geometric mean 
of the eye corner, as proposed in Padole and Proença (2012). Let RG(A1, A2, A3, A4) be a 
rectangle inside the gallery image. Similarly, let RP(Ai, Aj, Ak, Am) be the polygon 
extracted from the pose deviated sample. After registering landmarks, data is resized to 
the gallery size, in order to compensate for changes in scale and translation (Figure 6). 
Next, a set of projective transform matrices was generated (as per computational 
complexity that is affordable), using these landmark correspondences and slight 
variations in each vertex (moving each in a neighbourhood of radius r). We select the 
projective transform matrix that minimises the pairings dissimilarity in one of the feature 
spaces described below. Using pixelsÕ intensity, LBPs and HOGs to describe the 
periocular texture, the mean-squared point-by-point distance was used to measure 
dissimilarity: 

( ) [ ]
1

2

0

1, ( ) ( ) ,
−

=

= −∑
L

P G
D G P

k

f R R F k F k
L

 (5) 

where FG(k) and FP(k) are the feature representation inside the gallery and probe data and 
L is the dimension of the feature space. Finally, the projective transform selected is given 
by: 
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* arg min [., .].= D
H

H f  (6) 

Figure 5 Cohesive perspective of the pose compensation process 

 

Note: The projective transform that minimises the distance between the probe data and 
the set of gallery samples is deemed to represent the optimal alignment process and 
used in subsequent processing phases. 

Figure 6 Landmarks correspondences in the (a) quadrilateral ROIs on the gallery and  
(b) probe images 

 
(a)    (b) 
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In our experiments, for computational purposes we used a hierarchic search scheme to 
avoid the exhaustive computation of all possibilities in a range. In the earliest version of 
our experiments, we changed all vertices and the corresponding optimisation procedure 
took several hours to be carried out per image. Next, we varied exclusively one corner of 
the quadrilateral and noticed that the obtained results were quite close in terms of the 
final recognition performance. Hence, only landmark deviations at one side of the 
quadrilateral were tested (for vertices A2 and A3 in Figure 6). 

7 Dataset description 

The UBIPosePr dataset is freely available to the research community1 and can be used for 
periocular recognition experiments related to pose and illumination variations. Data was 
acquired in two sessions at different locations with varying lighting conditions, either due 
to the amounts of light and types of illuminants. There are 100 subjects of varying 
ethnicity (96% Caucasian, 2% African and 2% Asians), gender (85% males and 15% 
females) and ages (mean 23.15, standard deviation 2.93 years). The acquisition setup is 
given in Figure 7: 

• Session I. Six samples from each subject with frontal pose were acquired. This 
session was completely indoor, with overhead lamps. Subjects were at six metres 
away from the camera, which resulted in uniform illumination across the samples, 
with some poorly illuminated data. 

• Session II. This session provided 18 samples per subject. Out of them, six samples 
are frontal, six samples are left deviated and six have right deviated poses. Though 
this session was also indoor, it was conducted near open windows, allowing natural 
light to reflect on subjects. The subject-to-camera distance was five meters. The pose 
angles were annotated, as in Murphy-Chutorian and Trivedi (2009), by placing 
markers on the walls and asking for subjects cooperation. The left pose set covers 
angles in negative degrees {–20°, –33°, –48°, –60°, –79°, –84°} and right pose 
comprises positive values {10°, 20°, 35°, 45°, 60°, 85°}. The fact that angles are 
non-symmetrical was due to physical constraints of the acquisition environment and 
of the acquisition setup itself. 

Some examples of the dataset are shown in Figure 8, where variations in pose and 
illumination are evident. Additionally, there are variations in illumination between left 
and right eyes, which were divided into three classes: 

1 Single-eye variations are due to the deeper location of eyes, surrounded by forehead, 
nose and cheeks. Indoor, there is a high possibility that eye regions have shadows or 
less illumination than skin. 

2 Eye-pair variations occur when one of the eyes is more illuminated than the other 
due to lateral illumination. 

3 Probe-gallery variations, as gallery images were captured in relatively controlled 
setups, and probes in unconstrained conditions. 
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Figure 7 Image acquisition setup for both sessions, using gaze direction markers, represented in 
the figure by dot black points 

 

Figure 8 Sample images from the UBIPosePr dataset (see online version for colours) 

 

Notes: Row 1: first session, frontal samples; Row 2: second session, off-angle data  
{–20°, –33°, –48°, –60°, –79°, –84°} degrees; Row 3: second session, frontal 
samples; Row 4: second session with deviation angles of {10°, 20°, 35°, 45°, 60°, 
85°} degrees. 
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8 Experimental results 

Our experiments were performed according to the periocular recognition method of Park 
et al. (2011) that is among the most relevant works on this subject and often used as 
reference term. Based on a ROI that contains the periocular region, the feature extraction 
process performs both local and global analysis. The ROI is divided into a grid and for 
each cell, both the HOG and LBP descriptors were extracted. The feature representations 
inside each cell are concatenated to form a global descriptor. Further, the position and 
scale of the interest points found by SIFT are extracted. For the resulting feature vector, 
the Euclidean distance is used to calculate the matching distance between global 
descriptors and the distance ration-matching scheme is used for the local matcher (SIFT). 

8.1 Effect of illumination compensation 

The improvements in performance due to the illumination compensation techniques are 
summarised in this section. A set of frontal images was used and divided into two groups: 
gallery and probe data. At first, gallery images were matched against probes without any 
compensation technique. Then, the experiment was repeated after preprocessing data by 
the techniques described in Section 4. After tuning the parameters of each method in a 
completely disjoint dataset, the ROC curves obtained for the test data are given in  
Figure 9. The error bars at each operating point give the best and worst performances 
observed and enable to perceive how much results vary with respect to changes in data. 
They resulted from repeating the experiments 20 times, randomly selecting 90% of the 
genuine and impostor comparisons of the complete dataset, in a bootstrapping-like 
strategy. 

Figure 9 Improvements in performance due to illumination compensation techniques (see online 
version for colours) 
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We confirmed that both homomorphic filters and the SQI contribute for the normalisation 
of images with respect to changes in illumination and lead to improvements in 
performance, when compared to the results observed without any compensation (black 
lines). Equal error rates (EER) observed were of about 42.6 ± 4.1% (mean ± standard 
deviation) when using no compensation technique and 35.0 ± 2.9 and 35.2 ± 2.8 when 
using the homomorphic and SQI compensation techniques. We noted that the SQI and 
homomorphic filters outperformed on different ranges of the performance space: the 
latter technique appears to be the best for high confidence recognition, where low false 
match rates are demanded. Oppositely, the use of the SQI might be preferable on the 
other extreme of the performance space, where the number of false alarms might be 
neglected in respect of the recognition systems’ sensitivity. 

8.2 Effect of pose compensation 

To perceive the effect of pose in recognition performance, images were manually 
classified into three groups: 

1 The frontal subset comprises samples with no deviation in pose, i.e., ≈ 0°, either 
from Session I or Session II. This set was further divided into two disjoint subsets: 
Gallery and Probes. 

2 The deviated subset contains images with absolute pose angle less than or equal to 
60°, i.e., |θ| ≤ 60°. 

3 In the case of the extremely deviated subset, images have deviation angles greater 
than 60°, i.e., |θ| > 60°. 

Initially, we aimed at testing if the pose parameter actually has a statistically significant 
effect in the performance of periocular recognition. Hence, we devised an hypothesis test, 
stating as null hypothesis that there is no linear correlation between the scores obtained 
for genuine comparisons and the corresponding poses. The Pearson’s coefficient 
measures this kind of correlation: 

( )( )
( )( ) ( )( )2 2

2 2

( , ) ,
−

=
− −

∑ ∑ ∑
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n sp s p
ρ S P

n s s n p p
 (7) 

where S and P denote the similarity scores and absolute values of pose angles. The 
average scores for genuine comparisons with respect to pose are given in Figure 10. ρ 
follows a t-distribution with n – 2 degrees of freedom and the corresponding test statistic 
is given by: 

2

( 2) .
1
−

=
−

nt ρ
ρ

 (8) 

At a significance level of α = 0.01, the critical t-value of 2.81 was obtained and enabled 
to reject the null hypothesis. Table 1 gives the t-values obtained for the correlation scores 
obtained when using the HOG, LBP and SIFT feature descriptors. Being consistently 
larger that the critical value (≈ 9.11), the null hypothesis was clearly rejected in all cases. 
Therefore, as the final matching score is a linear combination of HOG, LBP and SIFT 
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scores, we concluded that pose affects the scores of genuine comparisons and – this way 
– degrades recognition performance. 

Figure 10 Normalised average similarity scores of the genuine comparisons with respect to 
deviations in pose and for different feature descriptors (see online version for colours) 

 

Notes: LBPs and SIFT showed a more robust behaviour to deviations in pose, whereas 
HOGs almost linearly decreased their average similarity with respect to deviation 
angles. Note that in this analysis, the flatness of lines should be regarded, instead 
of their absolute value. 

Table 1 Results of hypothesis testing 

Descriptor ρ t-value Result 

HOG 89.80 9.111 Reject 
LBP 13.34 9.136 Reject 
SIFT 1.86e5 9.110 Reject 

To assess the improvements in performance due to the proposed pose compensation 
strategy, a comparison between frontal gallery data and probes of varying pose was 
carried out. At first, we observed the results without any pose compensation technique. 
Next, we repeated the experiments when compensating for pose. Results are given in 
Figure 11, where the black lines denote no pose compensation and the red, green, and 
blue lines denote the results when compensating for pose using each of the tested 
optimisation strategies. The left plot gives the results for deviated data, whereas the right 
plot shows the corresponding values for extremely deviated data. The error bars at each 
operating point give the best and worst observed performance and enable to perceive how 
much results will vary with respect to changes in data. They were obtained when 
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repeating the recognition experiments 20 times, randomly selecting 90% of the genuine 
and impostor comparisons, in a bootstrapping-like strategy. 

In the case of deviated data, the EER observed were of about 41.3 ± 3.1% (mean ± 
standard deviation) when using no pose compensation technique and 42.1 ± 2.8,  
40.7 ± 2.1 and 36.3 ± 1.8%when using the proposed compensation strategy, according to 
the intensity, LBP and HOG optimisation criteria. Regarding extremely deviated data, the 
corresponding EER values were of about 45.1 ± 0.9% without any compensation 
technique and of 45.3 ± 0.4, 46.1 ± 0.6 and 41.0 ± 0.8 with the intensity, LBP and HOG 
optimisation criteria. It is obvious that pose compensation improves performance in the 
case of deviated samples, but only marginal improvements were observed for extremely 
deviated data. Here, it is interesting to observe the poor levels of performance for this 
type of data, which was justified by the non-planar shape of the periocular region that 
leads to occlusions in case of extreme deviations (over 60° in absolute value), that cannot 
be recovered by single camera projection techniques. For both the deviated and extremely 
deviated cases, the pose compensation technique yielded best performance when using 
the HOG descriptors in the optimisation process. In this case, apart from observing the 
best performance values, their variation was also the smallest (note the amplitude of error 
bars), which was positively regarded. 

Having concluded positively about the improvements in performance due to pose 
compensation when handling deviated samples (with misalignments lower than 60° in 
terms of absolute value), it is equally important to test whether the proposed method 
decreases the performance yielded for aligned data. Table 2 summarises the observed 
area under curve (AUC) values, giving the values obtained when using exclusively one of 
the eyes (R = right and L = left), and both eyes (RL), for each kind of feature descriptors 
(HOG, LBP and SIFT), and when fusing them at the score level (fusion). Also, values are 
shown for three sub sets (frontal, deviated and extremely deviated data). It can be 
confirmed that in no case the proposed method contributed for decreases in performance. 
Oppositely, compensating for pose consistently improved performance in the case of 
deviated data, which was regarded as an achievement. 

A noteworthy discussion is about the levels of performance observed, that are lower 
than the reported in previous works, such as those in Figure 1. However, it should be 
stressed that the quality of the data used in far worse in the case of our experiments, 
which was also a purpose of this work, to obtain a lower bound for the performance in 
such bad quality data. Hence, we claim that the given results are meaningful in relative 
terms and not in terms of the absolute values. 

Figure 12 summarises the improvements in performance due to the pose 
compensation techniques. The vertical axis represents variations in recognition sensitivity 
(TPR) and the horizontal axis the compensation technique used. The left plot regards the 
techniques used to compensate for illumination, giving the variations in sensitivity when 
compared to not using any illumination compensation technique. Plots at the centre and 
right give the variations in sensitivity observed when using the proposed technique to 
compensate for pose with respect to not using any compensation strategy. The centre plot 
regards deviated data and the plot at right regards extremely deviated data. For each plot, 
we give the values observed when using all the techniques tested in this paper: 

1 for illumination compensation, the homomorphic filtering and SQI 

2 for pose compensation, the three optimisation variants: pixel intensity, HOG and BP. 
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Figure 11 Comparison between the ROCs obtained when no pose compensation is performed 
(‘no compensation’ lines) and when compensating for pose according to three 
optimisation variants: based on pixel intensity, HOG and LBP, (a) the deviated subset 
(b) extremely deviated data (see online version for colours) 

 

(a) 

 

(b) 
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Values are expressed in boxplots, showing the median of the observed variations 
(horizontal solid line) and the first and third quartile values (top and bottom of the box 
marks). The horizontal lines outside each box denote the upper and lower whiskers, and 
dot points denote the outliers. By analysing these plots, it is obvious that the techniques 
proposed here for illumination and pose compensation contribute for consistent 
improvements in performance, as both the median and first and third quartile value are 
always positive, i.e., the variation in recognition sensitivity is clearly positive. The unique 
exception regards the case of extremely deviated data, where we concluded that the 
substantial amount of occluded data cannot be recovered by data projection techniques. 
In this case, we consider the problem insurmountable when imaging with a single 
camera. Even though, we concluded that the SQI contributes for improvements in 
sensitivity above seven percentile points, and the best pose optimisation variant (HOG) 
contributed for improvements in sensitivity around 13 percentile points, which was 
considered an achievement. 

Figure 12 Summary of the improvements in recognition sensitivity (TPR) due to the use of the 
techniques proposed in this paper (see online version for colours) 

  
(a)     (b) 

 
(c) 

Notes: (a) the variations between the sensitivity values observed when using illumination 
compensation techniques and the observed without using any technique of this 
kind. Boxplots at (b) and (c) give the variations observed when using the pose 
compensation techniques described in this paper, with respect to not using any 
pose compensation technique. 
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Table 2 Comparison between the levels of performance obtained when using no pose 
compensation (denoted by no compensation) and the proposed compensation 
technique with the optimisation process that outperformed in our experiments  
(HOG-based) 
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When analysing the results with respect to each feature descriptor, the best performance 
was observed for the SIFT. This was explained by the fact of being a local descriptor and 
– as such – with potentially higher robustness to non-uniform (local) changes in 
illumination that are frequent in our dataset. Lastly, the results obtained for left eyes were 
consistently better than for right eyes, which was explained by specific conditions of the 
data acquisition environment, that determined that left eyes are often over-illuminated, in 
opposition to right eyes that tend to be under-illuminated and with more shadows. 

9 Conclusions and future work 

Growing efforts are concentrated in the robustness of periocular biometrics to covariates 
that result from relaxing the data acquisition constraints (such as misalignment between 
camera and subjects and varying illumination conditions). In this paper, we assessed the 
decreases in performance due to varying lighting conditions and subject’s poses. Having 
confirmed the negative effects of both factors, we used homomorphic filters and  
SQIs to compensate for varying lighting conditions. Next, we described a method to 
compensate for pose based in a projective transform found from landmarks easily 
distinguishable in the periocular region (eye-corners), using a quadrilateral to maximise 
the similarity between gallery data and transformed probes. Our experiments pointed out 
that the proposed technique does not affect the results in case of frontal data and 
consistently improves performance when data is moderately deviated. Finally, we 
reported the maximal deviations that can be compensated with the proposed technique 
(up to 30°). For extremely deviated data (misalignments around 60° in terms of absolute 
value) substantial parts of the periocular region are occluded and – as the periocular 
region is far from planar – such missing information cannot be recovered by projection 
techniques derived from a single camera. 
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