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Covilhã, Portugal

Email: gmelfe@ubi.pt; hugomcp@di.ubi.pt

Abstract—The periocular region has recently emerged as a
promising trait for unconstrained biometric recognition, specially
on cases where neither the iris and a full facial picture can
be obtained. Previous studies concluded that the regions in
the vicinity of the human eye - the periocular region- have
surprisingly high discriminating ability between individuals, are
relatively permanent and easily acquired at large distances.
Hence, growing attention has been paid to periocular recognition
methods, on the performance levels they are able to achieve,
and on the correlation of the responses given by other. This
work overviews the most relevant research works in the scope of
periocular recognition: summarizes the developed methods, and
enumerates the current issues, providing a comparative overview.
For contextualization, a brief overview of the biometric field is
also given.

I. INTRODUCTION

Due to increasing concerns on security and safety of
modern societies, biometrics has emerged in the last decade
as a major domain of knowledge and has been motivating
significant research efforts. Considering the outstanding levels
of performance that currently deployed biometric systems
achieve, the interest now in putted in the development of
systems able to work in uncontrolled acquisition environments,
which significantly increases the challenges on reliable recog-
nition. In this setup, alternatives are sought [1] by improving
the existing algorithms, by using multi-modal systems or
exploring new traits. Despite a broad variety of traits that has
been researched, the classical traits to perform at-a-distance
recognition are the face and the iris.

The face is the most widely used biometric trait. Everyday
and even without noticing it, we all use facial information to
recognize each other. Not only that, it become one of the most
successful applications of image analysis and understanding.
Being non-intrusive and allowing cover acquisition, it became
preferable over very reliable traits like the iris or fingerprint
when aiming at less constrained subject recognition. Several
commercial face recognition systems are now available, and a
lot of techniques were developed [2] for both still images and
video. Face recognition approaches are either based on a global
analysis of the whole region as a set of pixel intensities, or the
relation between facial attributes, their location and shape.

The iris texture has a predominantly randotypic morpho-
genesis unique for each individual and allows very high

recognition accuracy, which justifies the efforts being held on
iris biometrics research [3] and its quick ascent as one of the
most popular biometric traits. While most of the commercially
deployed iris recognition systems work with constrained near-
infrared (NIR) data that favors perception of its patterns whilst
reducing the number of noise factors associated, literature
on extending this biometrics usability to ”relaxed” visible
wavelength (VW) setups has broaden [4]–[6]. However, iris
performance as a biometric trait is severely impacted in non-
ideal setups, and its relatively reduced size and moving profile
make it difficult to image at-a-distance and without user
cooperation.

The periocular region represents a trade-off between the
whole face and the iris alone. Containing the eye and its
immediate vicinity, it covers eyelids and eyelashes, nearby skin
area and eyebrows. Its use as a biometric trait has emerged,
constituting nowadays a strong alternative for less constrained
environments, when image acquisition is not reliable, and to
avoid spoofing of the iris patterns. It is easy to acquire without
user cooperation and does not require a constrained close
capturing, Also, this region is not so affected by the aging
process as other facial regions are, as for instance the mouth
and cheek whose skin become loosened over time.

Periocular biometrics can be used alone or complementary
to iris recognition, considering that the use of multiple traits
might be specially important to compensate for the adversity
of the environments and uncooperative subjects. Mot times, the
responses of periocular methods are fused at the score level
to the corresponding iris scores, due to their spatial proximity
and to the fact that a single camera might be able to acquire
both traits. Being relatively stable and rarely occluded, it’s
particularly useful when the subject is wearing a mask or
otherwise only exposing their eyes.

In terms of features of the periocular region, they can be
divided into two levels, as suggested by [7]: the first level
comprise the eyelids, eye folds, and eye corners; and the
second level comprises the skin texture, wrinkles, color and
pores. Analysis of those features can be carried on based on
their geometry, texture or color.

As described by Park et al. [8], the problems that arise
from periocular recognition can be summarized as follows:
Imaging: What would be the optimal spectrum band for
periocular biometrics? Is VW, more advantageous on covert



biometrics, fit for this trait?
Region definition What are the actual ”boundaries” of the
periocular region? Should iris, sclera or the eyebrows be
included or masked/cropped?
Encoding Which features would better describe and discrim-
inate this region? How reliable would they be when relaxing
imaging conditions?
Matching What’s the best matching scheme for those features?
Will coarse classification be of any use?
Fusion What would be the benefit on fusing periocular with
other traits? Which ones, and how to fuse them?

The remainder of this paper is organized as follows: Sec-
tions II and III overview the recognition systems and existing
datasets; Section IV comparatively details the relevant methods
developed on periocular recognition; and finally Section V
present some final considerations.

II. BIOMETRIC SYSTEM

The importance of the biometric authentication system
must not be disregarded, as it will be the responsible for
carrying the whole process, from the data acquisition, to fea-
ture extraction, and matching against the database. Therefore,
designing a system that adapts to its application scenario is
most important. In a general way, a recognition system is
composed of four modules [9]:

1) Sensor Module: A wide variety of sensors are available,
depending on which biometric trait we are going to work
with. Since most of the biometric traits consist on visual data,
cameras will be used for acquisition. On real-time systems,
the balance between the richness on detail of the acquired data
and the acquisition rate is essential, and therefore choosing
a proper camera also is. This module is strictly related with
the first step of recognition systems (trait acquisition) and is
where the trade-off between the quality of the gathered data
and user cooperation is set.

2) Quality assessment and Feature extraction: Even with
an optimal sensor setup, not always the acquired data is suited
for feature extraction. Therefore, its quality is usually assessed,
and the image discarded if no minimum requirements are met,
thus saving time in additional processing. The trait needs to
be properly located and segmented (specially useful to gather
preferably ”good” data), and then encoded as feature templates.

3) Matching and decision-making: In this module,
features are matched against the templates in the database,
thus deciding either to be in the presence of a genuine or

Trait 
Acquisition

Detection and
Segmentation

Quality 
Assessment

Feat. Extraction
and Encoding

Sensor Module

Matching and
Recognition

Decision MakingQuality Assessment and Feature Extraction

Database

Fig. 1. General steps and elements of biometric recognition systems.

impostor comparison.

4) System database: This module consists on the repository
of user biometrics and other identification information, which
is acquired during the enrollment stage, and used for later
identification or verification of users’ identity.

III. DATASETS

Only a few public datasets were designed for the devel-
opment of periocular recognition methods. Instead, face and
iris databases are generally used for that purpose. The most
commonly used databases for the evaluation periocular meth-
ods are now introduced1, and their specifications summarized
at Table I.

A. FERET

The Facial Recognition Technology (FERET) database [10]
was designed as a standard for developing face recognition
methods, and acquired at George Mason University over 11
sessions and a three years period (1993 to 1996). Initially
released as low resolution (256 × 384 pixels) grayscale data,
years later a high-resolution color version was also disclosed.
A total of 14051 images were gathered from 1199 different
subjects. Image acquisition protocol contemplates a semi-
controlled environment, with strict expression, pose and illu-
mination changes.

B. FRGC

Collected at the University of Notre Dame, the Face
Recognition Grand Challenge (FRGC) database [11] consists
of high resolution (≈ 1200 × 1400 pixels) color still images,
captured on both controlled and uncontrolled environments.
The controlled subset was captured on a studio under uniform
illumination, where subjects were required to stand still while
looking straight at the camera and essay neutral and smiling
expressions. As for the uncontrolled acquisition, images were
shoot in different scenarios, disregarding both background and
illumination. Data is split into a training partition of 12776
images from 275 subjects, and a testing partition of 24042
images from 466 subjects, 6 images per session for each
subject in both partitions. Illumination is not regular, as the
illumination bursts for a short period of time, and main noise
factors are observable (eye blink, motion blur, occlusions,
reflections). Acquired data is stored on 2048×2048, 15 frames
per second (fps) AVI files, where iris spatial extension is about
120 pixels [12].

1Although not so common, the FC-NET database will be included by its
relevant facial aging characteristics.

(a) FERET (b) FRGC (c) MBGC (d) UBIRIS2 (e) FG-NET

Fig. 2. Sample images from the commonly used datasets on evaluating
periocular algorithms. Except from (d), data has been cropped for illustration
purposes.



TABLE I. OVERVIEW OF DATABASE SPECIFICATIONS. VARYING
ELEMENTS ARE DISTANCE (D), EXPRESSION (E), ILLUMINATION (I),

OCCLUSION (O) AND POSE (P).

Name Images Subj. Dimensions Variations
FERET 14051 1199 512× 768 E, I, P.
FRGC 36818 741 ≈ 1200× 1400 E, I.
MBGC 149 AVI 114 2048× 2048 D, E, I, O, P.
UBIRIS.v2 11102 261 800× 600 D, O, I.
UBIPr 10950 261 Multiple D, I, O, P.
FG-NET 1002 82 ≈ 400× 500 D, E, I, P.

C. UBIRIS.v2

The UBIRIS.v2 is a unconstrained iris database [13], cap-
tured on the VW from moving subjects, at different distances
and challenging illumination conditions, simulating realistic
acquisition issues with the associated noise factors. Data for
both eyes is separately available, as well as the surrounding
periocular data, thus being prone to stress not only robust iris
related methods for the visible spectrum, but periocular ones
and their fusion as well. The 11102 acquired images represent
a total of 261 subjects, from different ages and ethnicities.

D. UBIPr

This newly created UBI Periocular Recognition (UBIPr)
database, by Padole and Proença [14], represent a renewed
effort to advance periocular biometric research, providing new
means of evaluating robust methods, at ”higher levels of
heterogeneity”.

In opposition the most common datasets used for periocular
method evaluation, noise factors were actually introduced
through acquisition setup: varying acquisition distance, irreg-
ular illumination, pose and occlusion. In addition, database
manual annotation include ROI and essential landmarks.

Dimensions vary, accordingly to the acquiring distance,
between 501× 401 (8m) and 1001× 801 (4m).

E. FG-NET

FG-NET is a facial aging database with around one thou-
sand images from 82 subjects, 0 to 69 years old. Captured with
different acquisition setups and many years apart, subjects have
clear changes in illumination, pose and expression. Images are
400× 500 pixels in size, captured on VW, and for each one a
68 facial landmark points annotation is also provided.

IV. RELEVANT RESEARCH

In this section we will detail the relevant research on
periocular biometric recognition, providing at Table III a
summarized overview over the described methods and reported
results.

A. Park et al. [8], [15]

Park et al. pioneering approach [15] explored the recog-
nition capabilities of the periocular region. Feature extraction
is divided in two approaches: local and global, as information
concerns local regions, or is extracted from the whole image
(or, in this case, several region of interest (ROI)).

For global feature extraction images are properly aligned
using iris center and radius as reference. Although authors

acknowledge eye corners to be more fit for such task [8], they
claim that such points cannot be reliably determined. Then,
two well-known distribution-based descriptors are employed,
namely Histogram of Oriented Gradients (HOG) [16] and
Local Binary Patterns (LBP) [17], [18]. Values are computed
for a given ROI independently, and then quantized into 8-bin
histograms. The ROI are contiguous squares, where the side
equals in length the iris radius, forming a 7 by 5 grid centered
on the iris. Those histograms, combining shape and texture
information, are merged into a single-dimension array, easily
matchable to an identical one (from another image) simply by
computing the Euclidean distance.

As for the local features, Scale-Invariant Feature Transform
(SIFT) [19] allowed the detection of a set of key-points, en-
coded with their surrounding pixels information, and compared
against their counterparts from the testing image. SIFT offers
invariance to translation, scaling and rotation.

Tests were conducted over a ”small” (899 images, 30
subjects, 2 sessions) database of frontal periocular images,
acquired in the VW. Although face matching achieving 100%
rank-1 recognition accuracy, the reported recognition for peri-
ocular range from 62.5% when using HOG features, to 80.8%
when fusing them with SIFT results. Curiously, combining the
three descriptors didn’t overcome those results, although joint
performance was very close: 80%.

On their later work [8], authors went further on stressing
periocular applicability for biometric recognition, analyzing
the impact of diverse factors over performance: eyebrow inclu-
sion or disguising, automatic segmentation, side information,
iris and sclera masking and expression variation.

As expected, results highlighted eyebrow information im-
portance, being more significant over SIFT where improve-
ments reached almost 19%. Nonetheless, the eyebrow inclusion
is more favorable over manual segmentation, as its perfor-
mance degraded when using automatic segmentation through
OpenCV, which was not observed on ”eyebrow-less” data.
Facial side information, on the other hand, can be considered
almost irrelevant, since performance variation from both to
same side matching didn’t go behind 1% except for SIFT on
2 of the 48 test setups.

Changes in subjects’ expression significantly lowered the
performance of LBP and HOG, although on SIFT, more robust
to distortions, a slightly increase was registered. Masking the
iris and the entire eye also caused performance to decrease, this
time being SIFT the more disfavored. Top accuracy for single
classifiers was 79.49%, achieved through SIFT on unmasked
periocular images, manually segmented with the eyebrow,
when compared to an image captured from the same side and
expression. As reported in their prior paper [15], score level
fusion didn’t represent a significant performance improvement.

The authors also simulated periocular recognition over non-
ideal conditions, performing four simple tests: result com-
parison against recognition with partial (occluded) facial and
periocular images; conducting cosmetic changes on the eye-
brows; template aging; and perspective variations. For the first
step, they used FaceVACS2 face recognition system, whose
99.77% recognition accuracy on ”clear” face images, dropped

2FaceVACS SDK available at: http://www.cognitec-systems.de

http://www.cognitec-systems.de


to 39.55% simply by occluding the lower region. Occluding the
periocular region is also an element of concern, since relatively
low occlusions lead to significant decay on performance.
Without score fusing the feature encoding methods, 10%, 20%
and 30% periocular occlusion led to accuracies no greater than
25.97%, 20.51% and 10.12% respectively (all with SIFT).

On eyebrow modifications, the TAAZ3 tool was used to
simulate eyebrow makeover, producing a decay from 7.5%
on LBP to 10% on the other descriptors. The tests regarding
pose effect were the ones with greater impact over periocular
recognition accuracy, specially when using SIFT. Apart from
frontal images, subjects shoot with 15◦ and 30◦ rotation of
the head, produced a 35% and 45% decay on this method’s
accuracy, respectively. Finally, another concern the authors rise
is the apparent tendency of the periocular region not to be
stable over relatively small amounts of time. Images captured
3 months apart from each other have up to 15% less accuracy,
and about 30% on only half an year.

As further work, multi-spectral analysis is suggested, along
with improvements on the alignment and matching methods.
Fusion with iris or face recognition is also not discarded.

B. Miller et al. [20], [21]

Miller et al. [20] analyze periocular skin texture using
Uniform Local Binary Patterns (ULBP) alone, with some
deeper insights on each region’s impact on the recognition
process. The ULBP, as it name states, is an LBP-based method,
with ”improved rotation invariance with uniform patterns and
finer quantization of the angular space” [22].

At a first stage, the periocular region is cropped proportion-
ally to the distance between the eyes, and scaled to 100× 160
pixels. Then, a 7 by 4 grid of square ROIs is defined, centered
on the eye, and iris and sclera texture effects are eliminated
overlapping an elliptical neutral mask to the image. Each ROI’s
histogram is normalized, and ULBP calculated using an 8-pixel
neighborhood. As such neighborhood produces 59 different
possible results, 59-bin histograms are populated with the
result count, and then merged to produce a single-dimension
array as the final periocular signature. Manhattan distance is
used for subject identification against the database.

Experiments were conducted on subsets of the FRGC and
FERET databases, for the left and right eyes separately and
both eyes together. Recognition rates were around 84% and
71% for each eye individually, and 90 and 74% for both eyes
together, on FRGC and FERET respectively.

Further to this work, Miller et al. [21] conducted deeper
analysis on image quality impact over periocular local texture
based recognition, namely changing blur, resolution and illu-
mination, while comparing the results with similar experiments
conducted with the entire face.

As preprocessing, the periocular region was cropped from
the FRGC database in proportion to the distance between
the eyes, and then resized to a square region with 251 pixel
long sides. Upon grayscale conversion, image histogram is
equalized and the eye is masked. Texture is then encoded using
LBP over a regular block division of the image, and values

3Free virtual makeover took, available at http://www.taaz.com

used to populate an histogram, similarly to other periocular
approaches.

Image blurring was achieved through Gaussian filter convo-
lution, and results showed that even though face being far less
affected by small amounts of blur than periocular, this last trait
is slightly better at high blur levels. As for resolution, images
were down-sampled up to 40% its original size, and behavior
was similar to the one of blurred images.

Illumination variation was not simulated, since the FRGC
database already contains both controlled and uncontrolled
acquired images. The low accuracy verified when matching
pairs of images captured on uncontrolled setups suggest that
local appearance approaches like LBP are not suited for
irregular lighting conditions.

Finally, information differences from one color channel to
the others were also analyzed. Conclusions show the green
channel as the more discriminant, with accuracy levels ≈ 23%
higher than for the red channel (which is presented as the less
discriminant). In fact, when fusing scores from all three chan-
nels, the red contribution only lowers the overall performance.
Blue channel has similar texture information as the green one.

In a general way, periocular was proven to outperform face
recognition in the stressed setups.

Further work includes conducting the same tests for differ-
ent classification methods, possibly adapting Support Vector
Machines (SVM) usage as suggested by Savvides et al. [23].

C. Adams et al. [24]

Adams et al. extended Miller’s work [20], proposing the
usage of a Genetic & Evolutionary Computing (GEC) method
to optimize the original feature set.

The first stage of feature extraction was conducted as
described by Miller et al. [20], and on the second stage the
Genetic & Evolutionary Feature Extraction (GEFE) chosen
was the Steady-State Genetic Algorithm (SSGA), as imple-
mented by the NASA’s eXploration Toolset for Optimization
of Launch and Space Systems (X-TOOLSS)4.

Reported results were about 86% accuracy for either eye
on the FRGC database, and 80% on similar experiments for
the FERET. Best results were obtained when using both eyes:
85% and 92% for those same datasets.

The usage of GEC represented an improvement of at least
10%, and only 49 ≈ 52% of the initial features were used.
Nevertheless, the selected algorithm was not proven to be the
optimal for that specific periocular features.

D. Xu et al. [25]

Inspired by the work of Park et al. [15], the authors
decided to expand their experiments to less ideal imaging
environments, evaluating the performance of different feature
schemes over the FRGC database.

In addition to LBP and SIFT, both local and global
feature extraction schemes were stressed: Walsh masks [26],
Law’s masks [27], DCT [28], DWT [29] Force Fields [30],

4http://nxt.ncat.edu/

http://www.taaz.com
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SURF [31], Gabor Filters [32] and Laplacian of Gaussian
(LoG). The LBP itself was tested while applied over some
of the other methods (Table II). For matching, different dis-
tance metrics were tested: Normalized Cosine, Euclidian and
Manhattan.

TABLE II. RANK-1 ACCURACY FOR LBP FUSION WITH OTHER
METHODS [25].

Fused methods Accuracy
LBP + LBP 42.5%
Walsh Masks + LBP 52.9%
Laws’ Masks + LBP 51.3%
Discrete Cosine Transform (DCT) + LBP 53.1%
Discrete Wavelet Transform (DWT) + LBP 53.2%
Force Field Transform + LBP 41.7%
Gabor Filters + LBP 12.8%
LoG Filters + LBP 30.9%

Experiments shown that best results were registered when
using local descriptors, and the post-application of LBP was
translated in a performance boost (Table II). Top accuracy of
53.2% was attained with DWT + LBP, followed closely when
combining this last one with DCT (53.1%) and Walsh or Laws’
Masks (52.9% and 51.3%).

Worst outcomes were registered for SIFT and Speed Up
Robust Features (SURF), with a Verification Rate (VR) no
greater than 1%, possibly due to the low resolution of the
images.

E. Bharadwaj et al. [33]

Bharadwaj et al. propose a new global matcher (GIST),
and its combination with ULBP for periocular recognition over
VW uncooperative images from UBIRIS.v2 database.

The GIST algorithm consists on combining five perceptual
dimensions, usually associated with scene description [34]:
naturalness,openness, roughness, expansion and ruggedness.

When computing the global GIST descriptor, and to
achieve local contrast normalization, the image is preprocessed
with Fourier transform. Then, the spatial envelope is computed
using a set of Gabor filters (4 scales × 8 orientations, produc-
ing a 1536 element GIST descriptor).

The ULBP is computed over the original image, sliced into
64 patches (producing a 64× 256 descriptor).

For both descriptors, matching is computed using χ2

distance, and min-max normalized results from both eyes are
fused simply by using a weighted sum.

Results showed that GIST overperformed ULBP, with
Rank-1 accuracy around 62% for the regions separately, and
70.82% for their fusion. The ULBP performance was around
53%, and 63.77% when fusing both region results. When
combining both descriptors, accuracy was boosted to 73.65%.

F. Woodard et al. [7], [12]

In their work, Woodard et al. [7] aimed at evaluating
periocular performance, thus determining its usability as a
biometric trait over NIR and VW data. Their analysis is
focused only on second level features (texture and color).

As pre-processing, periocular slice of images is cropped,
and an elliptical mask overlapped to the iris and sclera region
for ”unbiased” periocular analysis. Cropped color images from
the FRGC are scaled down to 100 × 160, while the periocu-
lar NIR frames from the Multi Biometric Grand Challenge
(MBGC) are 601× 601 pixel.

Texture features were encoded the same way for both
databases, through LBP computation over a ROI grid, which
was then quantized into histograms. As for the color informa-
tion on FRGC images, it was encoded using color histograms
for red and green channels. On this database, score level fusion
was used to combine texture and color results. Matching was
achieved using Manhattan distance for LBP and Bhattacharya
distance for color histograms.

Results suggest texture information to be more discriminant
that color, and score fusion only slightly improves overall
performance. As a comparison term, reported texture based
accuracy was around 90% and 88% on the VW, and 81%
and 87% on NIR for the left and right periocular regions
respectively.

On their later work, Woodard et al. [12] make use of
the periocular region texture information to improve iris data
reliability, aiming at overcoming the difficulties when dealing
with non-ideal imaging.

Tests were conducted over MBGC that, although being a
NIR database, is a challenging one for iris recognition due
to at-a-distance in-motion subjects and illumination variations.
Frames were treated as described above, with texture measured
computing LBP the same way. Iris processing was as of Daug-
man’s [35], except for the segmentation that was manually
performed to avoid further errors. Both methods’ results were
then normalized using min-max scheme, and combined by a
simple weighted sum.

Results demonstrate iris’ poor accuracy (10.1% ≈ 13.8%)
to benefit from fusing with periocular results, raising rank-1
to 96.5%.

G. Padole and Proença [14]

Padole and Proença also stressed how noise factors deteri-
orate periocular recognition, using natural images where those
factors were included by the acquisition framework instead
of simulating them: pose variation, distance of the subject,
pigmentation and occlusion.

Inspired by the work of Park et al. [15], they used the same
feature extraction techniques, except that ROI center was com-
puted with relation to eye-corners instead of iris center. This
new alignment method led to most significant improvements,
specially since in unconstrained biometrics gaze variations are
more prone to happening.

On score level fusion, linear an non-linear methods were
also tested: logistic regression [36] and Multi Layer Perceptron
(MLP) respectively. Although the last one reported to lead to
slightly better results, difference was not significant.

For the stressed covariates, interesting conclusions were
reached. Results shown that closer acquired distances didn’t
led to better performance, and neither did very large ones.
Worst results were obtained for images acquired at 4 m, and



though highest stressed distance was 8 m, top performance
was obtained at 7 m. Not surprisingly, pose variation impact
on performance was in inverse proportion: higher tilting angle
result in lower accuracy values. Same as for the occlusion.

Finally, iris pigmentation was reported to also impact
periocular recognition performance, specially on heavily pig-
mented ones which lead to lower accuracy. Best results were
obtained for medium pigmented irides.

Another interesting discovery was that subject gender af-
fects recognition rates. More precisely, female subjects are
easily identified using periocular biometrics than male ones.

H. Juefei-Xu et al. [37]

Juefei-Xu et al. address in their work the aging effect
on periocular recognition, reported to be an issue by several
authors (e.g. Park et al. [8]), even at relatively small time lapses
(months). This important issue is not trivial, as modeling the
aging process would require large datasets, and the decoding
of its dependence on external factors, as ethnicity, gender, etc.
The authors method was developed and validated on images
from the FG-NET database, taken years apart at different
acquisition setups, thus also dealing with illumination, pose
and expression issues.

Their method starts by preprocessing the periocular region:
pose is corrected through Active Appearance Models (AAM),
illumination is dealt with anisotropic diffusion model, and
region is normalized using the landmark points provided with
the database. Next step is feature extraction using Walsh-
Hadamard transform encoded LBP (WLBP), followed by
unsupervised discriminant projection (UDP) [38] application
that boosted results to very high performance levels.

Results show UDP to give better accuracy than
Principal Component Analysis (PCA) and Locally Preserving
Projections (LPP) by up to 40%. As for WLBP, results were
15% better than raw pixel intensity matching, and pose cor-
rection resulted in a 20% improvement. Finally, the proposed
method for the tested images resulted in a complete 100%
identification accuracy.

I. Hollingsworth et al. [39], [40]

The human ability to use contextual information and to
”disregard” most of noise factors adapting itself to surrounding
conditions is outstanding, making it a harder task for machines
to mimic. In fact, recognition algorithms should not try to just
mimic the human perception system, but to understand its way
of working, and then seek alternate strategies to tackle the same
issues.

Hollingsworth et al. understood existing methods to have
overlapped that step. Having that in mind, they [39] established
parallelisms between human perception and automatic recog-
nition systems, identifying which ocular elements humans find
more useful for periocular recognition.

On their essay, 640× 480 NIR images were acquired from
120 subjects using an iris camera (LG2200), and the iris was
completely masked to avoid biased answers. Only periocular
from eyes’ tight vicinity is visible, with some features used
by other methods partially hidden (e.g. eyebrows). 80 pairs

of images were presented to 25 human observers, who were
asked to tell if they belong to the ”same person” or ”different
people”, and how ”certain” they were. Further to that, the
observer had to individually rate each one of the features’
helpfulness, in a three level scale. Results showed eyelashes
to be the most helpful periocular feature, closely followed by
the medial canthus and the eye shape. The observers based
themselves on eyelash clusters, density, direction, length and
intensity. To the human observers, skin was actually the less
useful. Average human accuracy was 92%.

On their later work [40], similar tests with human observers
were widen to the VW band, with a more extent study on new
factors. The algorithms suggested by Park et al. [15] were
also implemented for periocular performance comparison, and
irides were evaluated using the IrisBEE biometric system from
ICE [41].

Trial data was also widen to 210 subjects, imaged on the
same controlled fashion with a setup as above, and on the
VW using a Canon D80 camera. The amount of observers also
increased to 56, to whom 140 pairs of images were presented
for each one of the four sets of experiments built: NIR and
VW, periocular and iris images. Test subjects could then rank
their certainty of a positive match in a 5 level scale, and
for the periocular images they had to specify how helpful
individual features were (”eye shape”, ”tear duct”, ”outer
corner”, ”eyelashes”, ”skin”, ”eyebrow”, ”eyelid”, ”color”,
”blood vessels” and ”other”).

Human NIR periocular recognition accuracy dropped to
78.8%, probably due to the different pairing system and limited
observation time, and VW performance was set on 88.4%.
Machine results were similar, within a 1% difference on overall
accuracy. The features identified as fit for periocular NIR
region were similar to the ones at [39], but for VW data
changes occurred: blood vessels, skin and eye shape were
reported to be more helpful than eyelashes.

When acquiring data on VW band, differences on acquired
skin details are perceptible. Also with the LG2200 camera
illumination, being designed for iris recognition, usually causes
skin saturation. As so, VW band was found to be preferable
for periocular recognition tasks.

Human perception of iris features is greater on NIR images,
leading to 85.6% accuracy against 79.3% on VW. However,
and unlike periocular, machines recognition was 13% better,
on average, than human observers, with 100% and 90.7%
accuracy for those same bands.

V. CONCLUSIONS

The interest on the periocular region as a biometric trait has
justifiably increased over the last years, considering the pioneer
approach of Park et al. [15] a starting point. Subsequently,
even simple algorithms led to fair performance levels, and the
surprisingly good response of LBP based methods (like ULBP
and WLBP) is noteworthy.

The recently developed methods focus mainly on texture
analysis and keypoint extraction. Periocular is currently re-
garded as specially suitable for unconstrained and uncoop-
erative scenarios, where iris cannot be properly imaged and
neither a full facial picture can be obtained. Also, results



TABLE III. OVERVIEW OF THE MOST RELEVANT PERIOCULAR RECOGNITION METHODS.

Approach Features Extract Classifier Dataset Accuracy

Park et al. [15]
Shape,
Texture,
Key-Points

HOG,
LBP,
SIFT

Euclidean distance,
SIFT matcher

899 VW images,
30 subjects, 2
sessions

HOG: 62.5%,
LBP: 70.0%,
SIFT: 74.2%,
Best: 80.8%

Miller et al. [20] Texture ULBP Manhattan distance FRGC,
FERET

FRGC: 89.8%,
FERET: 74.1%.

Adams et al. [24] Texture LBP +GEFE Manhattan distance FRGC,
FERET

FRGC: 92.2%,
FERET: 85.1%.

Woodard et al. [7] Color,
Texture

RG color histogram,
LBP

Bhattacharya,
Manhattan distance

FRGC,
MBGC

Left VW peri: 90%
Right VW peri: 88%
Left NIR peri: 81%
Right NIR peri: 87%

Woodard et al. [12] Texture Daugman’s irisCode,
LBP

Hamming distance,
Manhattan distance MBGC

Left Iris: 13.8%
Left Peri: 92.5%
Fusion: 96.5%
Right Iris: 10.1%
Right Peri: 88.7%
Fusion: 92.4%

Xu et al. [25] Texture,
Key-Points

Walsh Masks, Laws’
Masks, DCT, DWT,
Force Field Trans-
form, Gabor Filters,
LBP, SIFT, SURF,

Cosine distance,
Euclidean distance,
Manhattan distance

FRGC

DWT+LBP: 53.2%
DCT+LBP: 53.1%
Walsh+LBP: 52.9%
Laws’+LBP: 51.3%
...

Bharadwaj et al. [33]

Naturalness,
Openness,
Roughness,
Expansion,
Ruggedness,
Texture

GIST, ULBP χ2 distance UBIRIS.v2
GIST: 70.82%
ULBP: 63.77%
Fusion: 73.65%

Juefei-Xu et al. [37] Texture WLBP+UDP Cosine distance FG-NET 100%

Hollingsworth et al. [39] Human Human Human
NIR images,
120 subject 92%

Hollingsworth et al. [40] Human Human Human NIR and VW,
210 subjects

NIR Peri: 78.8%
VW Peri: 88.4%
NIR Iris: 85.6%
VW Iris: 79.3%

favoring VW periocular over NIR also show its fitness for
more relaxed setups and for its use based on conventional
surveillance cameras.

However, some issues remain to be properly addressed,
specially the about poses, occlusions and aging. Regarding the
latter, extending Juefei-Xu et al [37] work to different scenarios
should be considered.

The work of Hollingsworth et al. [39], [40] on human
perception suggests that eye shape constitutes a powerful ally
to the skin analysis methods on both spectral bands, thus
making us rethink periocular recognition, possibly taking a
leap away the overused texture methods. Eyelashes are also
pointed as a good indicator, specially for NIR, keeping in
mind that images differ from the ”traditionally” used periocular
images and the close capturing of the data could have biased
the results. Those issues should be addressed in further work,
as well as a more complete and uniform study of existent
methods’ performance over the UBIPr dataset.

ACKNOWLEDGMENT

The financial support given by “FCT - Fundação para
a Ciência e Tecnologia”and “FEDER”in the scope of the
PTDC/EIA/103945/2008 research project “NECOVID: Nega-
tive Covert Biometric Recognition”is acknowledge. Also, the
support given by IT - Instituto de Telecomunicações in the
scope of the “NOISYRIS”research project is acknowledge too.

REFERENCES

[1] K. Ricanek, M. Savvides, D. Woodard, and G. Dozier, “Unconstrained
biometric identification: Emerging technologies,” Computer, vol. 43,
no. 2, pp. 56 –62, February 2010.

[2] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recog-
nition: A literature survey,” ACM Comput. Surv., vol. 35, no. 4, pp.
399–458, December 2003.

[3] K. Bowyer, K. Hollingsworth, and P. Flynn, “Image understanding for
iris biometrics: A survey,” Comput. Vis. Image Underst., vol. 110, no. 2,
pp. 281–307, May 2008.

[4] K. Y. Shin, G. P. Nam, D. S. Jeong, D. H. Cho, B. J. Kang, K. R.
Park, and J. Kim, “New iris recognition method for noisy iris images,”
Pattern Recognition Letters, vol. 33, no. 8, pp. 991 – 999, 2012.



[5] T. Tan, X. Zhang, Z. Sun, and H. Zhang, “Noisy iris image matching by
using multiple cues,” Pattern Recognition Letters, vol. 33, no. 8, pp. 970
– 977, 2012, ¡ce:title¿Noisy Iris Challenge Evaluation II - Recognition
of Visible Wavelength Iris Images Captured At-a-distance and On-the-
move¡/ce:title¿.

[6] G. Santos and E. Hoyle, “A fusion approach to unconstrained iris
recognition,” Pattern Recognition Letters, vol. 33, no. 8, pp. 984 – 990,
2012.

[7] D. Woodard, S. Pundlik, J. Lyle, and P. Miller, “Periocular region
appearance cues for biometric identification,” in Computer Vision and
Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Soci-
ety Conference on, June 2010, pp. 162 –169.

[8] U. Park, R. Jillela, A. Ross, and A. Jain, “Periocular biometrics
in the visible spectrum,” Information Forensics and Security, IEEE
Transactions on, vol. 6, no. 1, pp. 96 –106, 2011.

[9] A. Jain, P. Flynn, and A. Ross, Eds., Handbook of biometrics. Springer,
2008.

[10] P. Phillips, H. Moon, S. Rizvi, and P. Rauss, “The feret evaluation
methodology for face-recognition algorithms,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 22, no. 10, pp. 1090
– 1104, October 2000.

[11] P. Phillips, P. Flynn, T. Scruggs, K. Bowyer, J. Chang, K. Hoffman,
J. Marques, J. Min, and W. Worek, “Overview of the face recognition
grand challenge,” in Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, vol. 1, June 2005,
pp. 947 – 954 vol. 1.

[12] D. Woodard, S. Pundlik, P. Miller, R. Jillela, and A. Ross, “On the
fusion of periocular and iris biometrics in non-ideal imagery,” in Pattern
Recognition (ICPR), 2010 20th International Conference on, August
2010, pp. 201 –204.

[13] H. Proença, S. Filipe, R. Santos, J. Oliveira, and L. Alexandre, “The
ubiris.v2: A database of visible wavelength iris images captured on-
the-move and at-a-distance,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 32, no. 8, pp. 1529 –1535, August 2010.

[14] C. Padole and H. Proença, “Periocular recognition: Analysis of per-
formance degradation factors,” in Biometrics (ICB), 2012 5th IAPR
International Conference on, April 2012, pp. 439 –445.

[15] U. Park, A. Ross, and A. Jain, “Periocular biometrics in the visible
spectrum: A feasibility study,” in Biometrics: Theory, Applications,
and Systems, 2009. BTAS ’09. IEEE 3rd International Conference on,
September 2009, pp. 1 – 6.

[16] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in In Proceedings of the International Conference on Com-
puter Vision and Pattern Recognition, 2005, pp. 886–893.

[17] T. Ojala, M. Pietikainen, and D. Harwood, “Performance evaluation of
texture measures with classification based on kullback discrimination
of distributions,” in Pattern Recognition, 1994. Vol. 1 - Conference A:
Computer Vision amp; Image Processing., Proceedings of the 12th IAPR
International Conference on, vol. 1, October 1994, pp. 582 –585 vol.1.
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