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Iris Recognition: What’s Beyond Bit Fragility?
Hugo Proença, Senior Member, IEEE

Abstract—The concept of fragility of some bits in the iris
codes regards exclusively their within-class variation, i.e., the
probability that they take different values in templates computed
from different images of the same iris. This paper extends
that concept, by noticing that a similar phenomenon occurs
for the between-classes comparisons, i.e., some bits have higher
probability than others of assuming a predominant value, which
was observed for near-infrared and (in a more evident way) for
visible wavelength data. Accordingly, we propose a new measure
(bit discriminability) that takes into account both the within-class
and between-classes variabilities, and has roots in the Fisher
discriminant. Based on the bit discriminability, we compare
the usefulness of the different regions of the iris for biometric
recognition, with respect to multi-spectral data and to different
filters parameterizations. Finally, we measure the amount of
information lost in codes quantization, which gives insight to
further research on iris matching strategies that consider both
phase and magnitude. Albeit augmenting the computational
burden of recognition, such kind of strategies will consistently
improve performance, particularly in poor-quality data.

Index Terms—Iris Recognition, Biometrics, Gabor Filtering,
Multi-Lobe Differential Filtering.

I. INTRODUCTION

The iris is undoubtedly among the most popular traits in the
biometrics literature. This is a topic that dates back to 1893,
when Bertillon suggested to use the iris in anthropometric
identification. Then, in 1951, it was confirmed that ”the texture
of the iris is so distinctive among different individuals that it
could be used as mean of identification” [20], and, in 1993,
Daugman [5] proposed the pioneer automated iris recognition
algorithm, that was subsequently enhanced [7]. Currently, the
iris trait is the subject of intensive research efforts, being some
of the most relevant summarised by Bowyer et al. [2].

Most of the previous works that studied the effectiveness
of the iris as a biometric trait concentrated in the levels of
false rejections and in the concept of bit fragility, observing
uneven levels of within-class variation among bits, i.e., the
probabilities that bits ”end up a 0 for some images of the iris
and a 1 for other images of the same iris”[13] are uneven, as
firstly formalised by Bolle et al. [1]. This paper explores beyond
the concept of fragility, by jointly considering the within-class
and between-classes variabilities. The insight is that not only
the probabilities of bits flipping among samples of one iris
are uneven, but a similar phenomenon occurs for samples
of different irises. i.e., some filters configurations used in
particular regions of the irises augment the probability that bits
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predominantly take a particular value. We propose the concept
of bit discriminability, which shares the roots of the Fisher
discriminant and has an intuitive (visual) representation. A
discriminant bit should: 1) keep a constant value among samples
of one iris; and 2) have a value that is independent of the values
in codes from different irises. According to this formulation,
the discriminability can be regarded as an extension to fragility:
a bit is fragile due to the high probability of flipping its value
in genuine comparisons. To classify a bit as discriminant, we
regard not only its fragility but also the probability of obtaining
agreeing values in impostor comparisons.

Based on this concept, we infer the suitability of each region
of the iris for biometric recognition. Three additional novelties
are given: 1) results are shown not only for the classical Gabor-
based texture description, but also for Multi-Lobe Differential
Filters (MLDF) [32], which were reported as a relevant advance
to the field; 2) we consider different levels of image quality,
corresponding to a broad range of data acquisition protocols;
and 3) we compare results for multi-spectral data (near-infrared
(NIR) and visible wavelength (VW)), enabling to perceive the
potential of each spectrum for biometric recognition.

Our results are based in four well known data sets: 1) the
University of Bath, representing good quality NIR data; 2)
the CASIA-Iris-Distance, representing NIR data of moderate
quality; the 3) UBIRIS.v2 and 4) FRGC datasets, both
representing VW data acquired in uncontrolled setups. Based
on disjoint learning / test datasets, more than 500,000 features
were extracted from the normalized iris images, corresponding
to every filter parameterization centered at a different position
in the iris. Then, four feature selection algorithms obtained the
best combinations of bits to be included in iris codes, from
where the most suitable iris regions / filters parameterizations
were inferred.

Finally, the concept of bit discriminability supports a change
to the classical iris recognition processing chain: in the code
quantization phase, if the sign-based function is replaced by a
sigmoid, not only the phase of coefficients is considered, but
also their weighted magnitude. This enables to match irises
with additional amounts of information, which contributes for
solid improvements in performance, albeit augmenting the
computational burden of recognition.

The remainder of this paper is organized as follows: Section
II summarizes the related work. Section III formalizes the
concept of bit discriminability. Section IV describes the
evaluation protocol and setup. SectionsV and VI give the results
respectively at the bits and classifiers levels. Finally, Section VII
concludes the paper.
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II. RELATED WORK

A. Iris Recognition

A long road has been travelled since the pioneering iris
recognition algorithm, due to J. Daugman [5]. The iris is
currently among the most popular traits in biometrics research
and the recently published algorithms can be classified with
respect to the images spectrum they aim to deal with: NIR or
VW.

Regarding the first family, strides were given to improve
the recognition performance against hard subjects, acquisition
artifacts, and inter-sensor operability. Dong et al. [8] proposed
an adaptive personalized matching scheme that highlights
the discriminating features of each class (iris) and augments
the robustness against several data degradation factors. Pillai
et al. [24] used the sparse representation for classification
algorithm in randomly projected iris patches, which was
observed to improve the robustness against segmentation errors
and acquisition artifacts. The possibility to perform recognition
in data acquired from multiple kinds of sensors motivated
the algorithm proposed by Pillai et al. [25], that learns
transformations between data acquired by different sensors
and avoid that users are re-enrolled each time a new sensor is
deployed.

The VW family of algorithms is mostly focused in the
recognition robustness against several degraded data, acquired
in as much unconstrained as possible acquisition setups. The
algorithm due to Tan et al. [35] got the best performance in
the NICE [27] contest and is considered the state-of-the-art
for visible light data. More recently, Kumar et al. [19] used
the local Radon transform to feed the Sparse Representation
for Classification (SRC) algorithm, and stressed the good
performance that this kind of method attains in iris data.
Kumar and Chan [18] approached the problem from the data
representation perspective, exploring the use of hyper-complex
numbers to store the orientation of texture elements in the iris,
later classified by the SRC algorithm. Also, Tan and Kumar [34]
weighted the bits in iris codes in a specific way, according
to the predominating noisy regions, which was observed to
increase the recognition robustness against hard environments.

B. Study of Iris Codes

Several works studied the nature of the iris texture and the
properties of the resulting codes. As relevant examples, Kong
et al. [15] provided a deep understanding of the geometric
structures of the codes, regarded as a clustering algorithm.
These authors showed the relation between the Hamming
distance used in matching and the bitwise phase distance,
arguing that Gabor kernels are actually phase-steerable filters.
Subsequently [16] [17], Kong focused on the geometrical
relationships of bits in iris codes, regarded as convex polyhedral
cones. The relationships detected imply that a property (central
ray) is enough to reveal patterns among codes, which might be
used to break systems without a liveness and quality checker.

The recognition performance respect to covariates were also
previously studied: Bowyer et al. [3] tested three of these
factors: 1) the effect of pupillary dilation in performance; 2)
the iris stability over lifetime; and 3) the effect of contact

lenses. They concluded that these factors bias the genuine
distribution toward the impostors’, but also confirmed that
the probability for false acceptances is practically invariant
to these factors. More recently, Mehrotra et al. [21] claimed
that the movement of the genuine match scores toward the
importers distribution was due to other covariates (such as blur,
occlusions and pupillary dilation), perhaps even at a higher
degree than the ageing effect.

Concerns about the fragility of some bits in the iris codes
date back to the earliest implementations of the acknowledged
Daugman’s recognition algorithm, by disregarding the bits with
responses near the axes. Then, Bolle et al. [1] formalized the
term of fragile bit and observed that, due to imaging noise,
not all bits have equal possibilities to flip among samples
of one iris. Hollingsworth et al. [12] analyzed the fragility
in iris codes and a similar idea had been reported in [26].
Subsequently, Hollingsworth et al. [13] found that the middle
bands of the iris are better than the inner parts and that large
filters provide more consistent bits than small filters, due to
the attenuated effect of acquisition artefacts. Finally, the same
authors used the notion of bit fragility to propose [14] a new
matching distance based in the linear combination between
the proportion of disagreeing bits and the fragile bit distance
(FBD), that expresses the fraction of unoccluded bits masked
for fragility in the comparison. They observed that the FBD
carries complementary information to the traditional distance
and that results obtained by fusing both measures are better
than when using any of these alone. The discriminability of
the bit coefficients due to the coarse quantization of the phase
response was also studied [13], being suggested to ignore bits
with amplitude in the lower quartile.

In terms of the selection of the most reliable bits of iris
codes, Dozier et al. [9] based their work in the concept of
bit fragility. When compared to the classical code of 2,048
elements, they were able to reduce the number of bits by
30%, without significantly increasing the error rates. They
even reduced the number of bits in 90%, but in this case
observed a significant increase in the error rates. Rathgeb et
al. [30] obtained the bit-error occurrences and a corresponding
global-rank of bit positions. Based on this information, the less
reliable bits were discarded, which improved performance and
simultaneously reduced the size of codes.

III. BIT DISCRIMINABILITY

For comprehensibility, we adopt a notation similar to the
used by Bolle et al. [1]. Let I(p) and I(q) be two real world
irises, from where the binary iris codes C(p) = F (I(p)) and
C(q) = F (I(q)) are extracted (F is a composition of an imager
and a feature encoding system). There are two hypotheses:

H0 : C(p) and C(q) are from the same iris (p = q);
Ha : C(p) and C(q) are from different irises (p 6= q).
Let C(p)

k denote the kth bit (out of t) of an iris code, i.e.,
C(p) = {C(p)

1 , . . . , C
(p)
t }. We are interested in defining a

metric for each bit discriminability, in terms of its (a priori)
effectiveness for biometric recognition.

Definition III.1. Let ⊕ denote the exclusive-or logi-
cal operation. The kth bit is considered discriminant
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for biometric recognition if two conditions are met:
1) 1 - P (C

(p)
k ⊕ C

(q)
k = 0 |H0 ) < δ; and 2) | 12−

P (C
(p)
k ⊕ C

(q)
k = 0 |Ha)| < δ, for a small δ ∈ R+.

The kth bit contributes for a Type I classification error (false
match) with probability P (Ha) P (C

(p)
k ⊕ C

(q)
k = 0 |Ha).

Similarly, it contributes for a Type II classification error (false
non-match) with probability P (H0 ) P (C

(p)
k ⊕ C

(q)
k = 1 |H0 ),

i.e., P (H0 )
(
1 − P (C

(p)
k ⊕ C

(q)
k = 0 |H0 )

)
. Hence, the

probability that the bit contributes for a classification error
ε is given by:

ε(k) = P (H0 )
(
1− P (C

(p)
k ⊕ C

(q)
k = 0 | H0 )

)
+ P (Ha)P (C

(p)
k ⊕ C

(q)
k = 0 |Ha), (1)

where P (H0 ) and P (Ha) are the prior probabilities for
genuine and impostors comparisons.

Definition III.2. Let xk = P (C
(p)
k ⊕ C

(q)
k = 0 |H0 ) and

yk = P (C
(p)
k ⊕ C

(q)
k = 0 |Ha). We define (xk, yk) as the

visual representation of the bit discriminability.

For the discussion below, two (readily satisfied) assumptions
are made:

• we assume that P (H0 ) = P (Ha) = 0.5, i.e., for the
purpose of our analysis we make no assumptions about the
prior probabilities of genuine and impostor comparisons.
However, it should be noted that in most practical
scenarios P (Ha) � P (H0 ), i.e., for databases with a
single template per eye, an identification process will
require much more impostor than genuine comparisons
(at most one).

• we assume that P (C
(p)
k ⊕ C(q)

k = 0 |H0 ) ≥ P (C
(p)
k ⊕

C
(q)
k = 0 |Ha). In any practical biometric system, there

is no reason for observing agreeing bits more likely in
impostors than in genuine comparisons.

Definition III.3. A quantitative measure of the bit discrim-
inability is given by the Euclidean distance between (xk, yk)
and the straight line y = x, τ(k) = |yk − xk|.

Theorem III.1. Let (xi, yi) and (xj , yj) be the visual rep-
resentations of the discriminability of the ith and jth bits of
iris codes, such that τ(i) > τ(j), and x. ≥ y. ≥ 0.5 Then,
ε(i) < ε(j) and the ith bit is less likely to contribute for a
classification error than the jth bit.

Proof: By hypothesis, τ(i) > τ(j), i.e., |yi − xi| > |yj −
xj |. Then, yi−xi > yj−xj ∨ xi−yi < xj−yj . As x. ≥ y., it
follows that x.− y. ≥ 0. Then, xi− yi > xj − yj . Multiplying
both sides by -1, we know that yi − xi ≤ yj − xj . Adding
a constant in both sides and dividing everything by another
constant, we have (1−xi)+yi

2 ≤ (1−xj)+yj
2 , i.e., ε(i) < ε(j).

Fig. 1 illustrates the concept of bit discriminability: the
central plot is the 2D histogram of the (x, y) visual rep-
resentations for bits extracted from the University of Bath
dataset. The left plot schematizes this histogram, and marks
the non-discriminability line (y = x). The ”A” symbol denotes
an optimal feature and ”C” denotes features that keep the

TABLE I
RESULTS OF THE KOLMOGOROV-SMIRNOV [11] NORMALITY TEST, USING

THE null HYPOTHESIS THAT P (C
(p)
k ⊕ C(q)

k = 0 | Ha ) FOLLOW A
BINOMIAL DISTRIBUTION B(n, 0.5), AT THE 5% CONFIDENCE LEVEL.

RESULTS ARE GIVEN FOR ALL THE DATA SETS CONSIDERED IN THIS PAPER.

Dataset n null hypothesis P-value
BATH 200, 000 7 6.80e−4

CASIA 200, 000 7 1.93e−6

UBIRIS.v2 200, 000 7 6.71e−11

FRGC 200, 000 7 5.27e−10

same value both for genuine and impostor comparisons. At
the other extreme, the ”R” region corresponds to features
that behave randomly (like dynamic noise). Features close to
”R” predominantly contribute for Type-II classification errors
(Region FR), and features in the upper-right corner contribute
more for Type-I classification errors (Region FA). The fact that
most bits fall in the region FR is the root for the extraordinary
small probability of false acceptances in current recognition
systems, but also justifies their relatively high false rejection
rates.

The bar plots at the right side of Fig. 1 are particularly
important for the context of this work: the upper plot (vertical
projection) gives evidence of the levels of bit fragility. Com-
plementary, the bottom plot (horizontal projection) shows the
varying levels for P (C

(p)
k ⊕ C

(q)
k = 0 | Ha), and supports the

concept of bit discriminability.
However, the concept of discriminability depends of whether

the relative frequency of P (C
(p)
k ⊕ C

(q)
k = 0 | Ha) is not

simply function of a random effect. In that case, values should
follow a Binomial distribution B(n, p), where n is the number
of pairwise bit comparisons, each of which yields success with
probability p and probability mass function given by:

P
(

(C
(p)
k ⊕C

(q)
k = 0 | Ha) =

s

n

)
=

(
n

s

)
ps(1− p)n−s, (2)

where s is the number of successes (bits agreement). Using
a large set of n pairwise bit comparisons and assuming that
p = 0.5, the Normal distribution N (np,

√
np(1− p)) may

be used to closely approximate results from the afore bino-
mial distribution. According to the Kolmogorov-Smirnov [11]
normality test, the null hypothesis stating that values follow
B(n, p) was rejected with asymptotic P-values lower than 1e−7

for all the datasets used in this paper:
According to the results given in Table I, it can be concluded

that P (C
(p)
k ⊕C

(q)
k = 0 | Ha) varies consistently with respect

to some other factor apart randomness. Also, this phenomenon
is more notorious for VW than for NIR data (substantially
lower P-values for VW than for NIR data), which we believe
to have roots in the corneal reflections determined by the
ambient VW wavelengths that are not blocked in the camera.
In this case, the images of the different subjects tend to display
brighter intensities in similar positions of the iris, which has
some influence in the P (C

(p)
k ⊕ C

(q)
k = 0 | Ha) value.

IV. DATASETS AND PREPROCESSING

Four freely available data sets were used in the experiments,
each one representing a data acquisition scenario. Fig. 2
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Fig. 1. The left figure is a schematic representation of bit discriminability. The central plot is a 2D histogram of the discriminability of bits extracted from
the University of Bath data set. The histograms at the right side are the vertical and horizontal projections of the center plot: the upper histogram evidence
different levels of bits fragility, whereas the bottom histogram points for additional non-random variation.

illustrates some of the images considered: the upper row regards
the BATH data set and the subsequent rows represent the
CASIA-Iris-Distance, UBIRIS.v2 and FRGC data sets.

A. DataSets

• The University of Bath data set1 contains 32,000 NIR
images from 800 subjects. From these, 6,000 images from
1.000 different classes (eyes) with very good quality were
considered, to represent the optimal conditions where a
recognition system work. All irises are sharp, without
relevant occlusions and in frontal view.

• The CASIA-Iris-Distance set2 was collected by the CASIA
long-range device in a relatively unconstrained setup.
Images feature blink, motion blur, off-axis gaze and
other small anomalies, representing NIR data of moderate
quality. A set of 9,521 images (127 subjects, 814 classes)
was used, for which segmentation and noise detection was
confirmed by visual inspection.

• The UBIRIS.v2 [28] dataset has 11,102 images from 261
subjects, acquired at visible wavelengths between three
and eight meters away, under dynamic lighting conditions
and unconstrained setups. Images are high heterogenous
in terms of quality, with glossy reflections across the iris,
significant occlusions due to eyelids and eyelashes, off-
angle and blurred data. 5,340 images from 518 classes)
were selected from this dataset, all of them accurately
segmented. All these images were converted to grayscale.

• The FRGC [23] data set served initially for face recog-
nition experiments and is a specially hard set for iris
recognition, due to its limited resolution. The still images
subset from both the controlled / uncontrolled setups was
used. Images are typically frontal, with varying amounts
of light, shadows and glossy reflections that occlude

1http://www.smartsensors.co.uk/products/iris-database/32-000-full-set/
2http://biometrics.idealtest.org/

portions of the irises. 4,360 from 868 classes images
were selected from this data set. All these images were
reasonably segmented, according to visual inspection, and
were converted to grayscale.

• The UBI SPECTRAL is a set of iris data acquired in a
synchronous way in the NIR and VW wavelengths, with
a multispectral JAI AD080-GE camera, in a laboratorial
controlled acquisition protocol. It contains data from 34
subjects, with 80 images per subject (20 NIR and 20
visible images, divided into 2 acquisition sessions). All
images are frontal, sharp and practically noise-free. All
the images were accurately segmented and VW images
was converted to grayscale.

Fig. 2. Examples of the data sets used in the experimental evaluation. From
top to bottom rows: BATH, CASIA-Iris-Distance, UBIRIS.v2, FRGC and
UBI SPECTRAL datasets.

For the BATH, CASIA, UBIRIS and FRGC data sets, random
samples composed by half of the within-class comparisons
available and the same number of between-classes comparisons



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. ?, NO. ?, ? ? 5

were created. Next, in an iterative way, fully disjoint sets of the
learning data were used to evaluate the recognition performance
and estimate P (C

(p)
k ⊕C

(q)
k = 0 | H0 ) and P (C

(p)
k ⊕C

(q)
k =

0 |Ha). Starting with tw = 1, 000 within-class and tb = 5, 000
between-classes comparisons, the recognition performance was
obtained. At each iteration t, the number of comparisons was
increased by a constant factor (t(t+1)

w = 1.1 t
(t)
w , t(t+1)

b =

1.1 t
(t)
b ) until the performance values converged (after t = 49

iterations).
The procedure described above can also be regarded as a

way to mitigate the different number of degrees-of-freedom
(DOF) in each sample and the way this factor might increase
the correlation between bits and bias the subsequent results.
Note that the data samples had varying number of classes,
corresponding to different DOFs in the sets of pairwise
comparisons. Even though, as the learning process was only
stopped when performance was observed to converge, this
implies that for large amounts of data, these changes in the
number of DOF do not lead to substancial changes in the
recognition performance. Finally, it should be stressed that
none of these comparisons was used in feature selection,
i.e., the learning and test sets were mutually exclusive. For
reproducibility of the results, the set of all the pairwise
comparisons used in the scope of this paper is available at3.

B. Iris Segmentation, Noise-Free Texture Detection and Nor-
malization

An overview of the preprocessing chain and of the resulting
images is given in Fig. 3. For all the data sets considered in
this paper, the unoccluded regions of the irises were obtained
according to the algorithm of Tan et al. [33] (image at the
upper-right corner). Next, an elliptical parameterization was
chosen for both iris boundaries, using the random elliptic Hough
transform. Based on the parameterization of the pupillary and
scleric iris boundaries, the translation into the dimensionless
pseudo-polar coordinate system was carried out according to
the Daugman’s rubber sheet model (images at the bottom-left
corner).

V. AMOUNT OF INFORMATION AND INDIVIDUAL BIT
DISCRIMINABILITY

A. Amount of Information in Iris Patches

The amount of information available in small iris patches
was measured by the Shannon entropy criterion, quantifying (in
terms of bits) the expected value for the amount of information
in square regions p× p of the normalized image I:

h(Ip×p) = −
∑
i

P (Ip×p = i) log2

(
P (Ip×p = i)

)
, (3)

where P (Ip×p = i) is the probability for the ith intensity in
the patch.

In order to fairly compare the local entropy between NIR
and VW data, without concerns about the lighting conditions,
the levels of iris pigmentation of the intrinsic features of

3http://www.di.ubi.pt/∼hugomcp/BitFragility

Noise-Free Iris

Texture [33]

Boundaries Parameterization

(RHT)

Daugman’s Rubber

Sheet

Fig. 3. Processing chain for segmenting the irises, detecting the noise-free
iris regions, parameterizing the boundaries and converting them into the polar
domain.
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Fig. 4. Comparison between the average entropy values (3) observed in
iris patches of NIR (left plot) and VW data (right plot). Results regard the
UBI SPECTRAL set.

the subjects in each dataset, the UBI SPECTRAL data set
was used. In this case, as all images were acquired in highly
controlled lighting conditions and in synchronous way for the
NIR and VW wavelengths, the effect of the above factors
should be minimised. Also, we used the average intensity
inside the iris of the grayscale version of the VW images as
an estimator of the levels of iris pigmentation. This way, the
highest values correspond to light pigmented irises (light blue),
whereas the lowest intensities are from the heavily pigmented
irises (dark brown / black). Fig. 4 compares the box plots
of the local entropy values obtained for the NIR (left plot)
and VW (right plot) data, with respect to the levels of iris
pigmentation (horizontal axes). Four groups of pigmentation
were considered, corresponding to dark brown / black (1th

quartile of the average intensities), light brown (2nd quartile),
green / dark blue (3rd quartile) and light blue (4th quartile)
irises. We confirmed that values vary much more in VW than
in NIR data, and, for the former wavelength, is notoriously
higher for light pigmented than for dark irises. For NIR data,
the heavy pigmented irises (3rd and 4th quartiles) have slightly
higher local entropy than the remaining classes, which is in
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exact opposition of the VW case. Also, the entropy in patches
across the iris is more heterogeneous for VW images than
for NIR, which is particularly evident for light pigmented
irises. With regard to local variations, heavy pigmented irises
acquired in VW have not only a relatively low amount of local
information, but also display low variability between patches.
i.e., in practice provide much flatter distributions for VW than
for NIR data.

For the remaining datasets, Fig. 5 quantifies the amount of
information in p = 9 patches. Even noting that the comparison
between data sets might be unfair (the original images have
different resolution), the immediate conclusion is the higher
homogeneity of values observed in NIR data than in the VW
case. Note that the average values were also much higher in
NIR than in VW data, which actually implies that the NIR
images provide more heterogeneity in terms of intensities in
iris patches than VW data.

Also, we observed that the pupillary regions are the most
valuable in NIR images, which is not evident in VW. Regarding
the FRGC dataset, there are two regions near the pupillary
boundary with values notoriously higher than the remaining
regions. We confirmed that they were due to frequent reflections
not detected by the noise-free segmentation phase. Also, noted
that in the FRGC set the bottom parts of the irises have
evidently smaller amounts of information than the upper parts,
probably due to the lighting sources from above that propitiate
shadows in these regions.

B. Filters Parameterizations

The discriminating power provided by each region of the
iris was assessed with respect to two families of filters: 1)
Gabor kernels, which faithfully model simple cells in the
visual cortex of mammalian brains [4] and are used in the
most acknowledged iris recognition algorithm; and 2) Multi-
lobe differential filters (MLDF), which were recently reported
as a relevant advance in the iris recognition field [32].

The impulse response of a Gabor kernel is defined by the
multiplication of a harmonic and a Gaussian function:

G[x, y, ω, ϕ, σ] = exp
[−x2 − y2

σ2

]
exp[2πωiΦ], (4)

where Φ = x cos(ϕ) + y sin(ϕ), ω is the spatial frequency, ϕ
is the orientation and σ the standard deviation of a Gaussian
kernel (isotropic in our experiments, σ = 0.65ω). A more
general form of Gabor filters can be found in the literature
(e.g., [7]), allowing for different scales along the axes (σx
and σy). In this paper, to keep moderate the dimension of the
parameterisation space, we decided to use exclusively filters
with the same scale along the axes.

Regarding the MLDF filters, they can be parameterised
in terms of the number of positive/negative lobes, location,
scale, orientation and inter-lobe distance. To keep the number
of possibilities moderately low, only Gaussian kernels with
balanced number of positive / negative lobes (1/1, 2/2, . . . ) and
equal scale for both types of lobes were considered. Hence,
the MLDF filters are expressed by:

m[xj, µj, σj] =

tl∑
j=1

(−1)j+1 1√
2πσj

exp
[−(xj − µj)

2

2σj

]
,

(5)

where xj= (xj , yj) is the center of each of the tl lobes.
Next, k = {m, g} filters were convolved with each nor-
malized iris image I , providing a set of coefficients. The
sign of the coefficients was obtained, i.e., C is the vector
representation of sgn(I ∗ k). In terms of parameterisations
tested per filter, for Gabor kernels the wavelength (px.)
ω : {1 : 1 : 14}, the orientation ϕ : {0, π/4, π/2, 3π/4}
and the Gaussian sigma σ : 0.65ω. Regarding MLDFs, the
number of lobes tl : {1/1, 2/2, 3/3, 4/4} and the Gaussian
sigma σ : {1, 2, 3, 4, 5, 6}.

Fig. 6 expresses the variations in discriminability with respect
to each parameter of the filters. The continuous lines represent
the BATH dataset, the dashed lines with the diamond marks
regard the CASIA-Iris-Distance. The UBIRIS.v2 is given by the
dotted lines with triangular marks and the FRGC dataset by the
dashed lines with circular marks. Above each plot we illustrate a
normalized iris image and represent the filters that correspond to
the nearby positions in the plot. Generally, the discriminability
was substantially higher for MLDF than for Gabor filters.
In case of the latter filters, larger wavelengths consistently
increased the discriminability, essentially because they have a
reduced sensitivity to outlier values due to acquisition artifacts.
Orientation is another relevant parameter for Gabor kernels,
where filters that analyze features that spread radially in the
normalized data provided much better results. Regarding MLDF
filters, filters with more lobes got worse results, which might
be due to the cross-elimination effect of differences between
lobes. Surprisingly, the variation in results with respect to the
sigma of the Gaussian kernel were not so evident as in the
case of Gabor kernels.

C. Bit Discriminability

The discriminability τ of each bit extracted was obtained.
Note that the iris patches evolved in the convolution for each
bit contribute to the result in different degree, according to the
magnitude of the kernel at each point, i.e., if a kernel has very
small value at a specific position, the corresponding intensity
on the patch almost does not affect the result. This way, the
contribution of each location [x, y] in the iris to the bit value
is given by:

Ψ[x, y] =

∑
i

(
|ki[x− ri, y − ci]| τ(i)

)
∑
i |ki[x− ri, y − ci]|

, (6)

where [ri, ci] is the central position of the ith filter ki and
τ(i) is the discriminability of the ith bit.

Fig. 7 gives the discriminability provided by each region
of the iris in the Cartesian and polar coordinate systems: the
maximal values were obtained for the NIR data sets, both for
Gabor and MLDF filters. Interestingly, in all cases the lower
parts of the iris were better than the upper parts, which are
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Fig. 6. Average discriminability τ̄ of the bits in iris codes, regarding filters
parameterization. The upper row regards the Gabor kernels (wavelength and
orientation parameters) and the bottom row corresponds to the MLDF filters
(number of lobes and sigma of the Gaussian kernel).

more frequently occluded by eyelids. Globally, MLDF filters
provided more homogeneous values than Gabor filters. For VW
data, regions nearby the pupillary boundary are worse than
the middle and outer bands, probably due to the difficulty in
obtaining reliable estimates of the pupillary boundary in VW
images.

Regarding the radial bands in the iris, even though the
maximal discriminability was observed for the middle bands,
this might not be due to biological properties of the iris texture.
Instead, the middle bands are the regions where the largest
filters can be applied without surpassing the iris boundaries.
As illustrated in Fig. 6, large filters tend to produce more

discriminant bits, which accords the results given in [13].
It is interesting to note the reduced correlation between the

amounts of information in iris patches and the discriminability
of each patch. For the BATH data set, the levels of linear
correlation between variables h[x, y] and Ψ[x, y] were -0.12/-
0.38 (Gabor/MLDF filters), and -0.40/-0.22 for the CASIA-Iris-
Distance set. Regarding the VW data, values were 0.16/-0.02
for the UBIRIS.v2 and -0.34/-0.41 for the FRGC datasets.
These low correlation values in terms of magnitude and sign
(negative in 7/8 of the cases) give space for additional research
about iris feature extraction / matching strategies that profit in
a better way from the amount of information that is locally
available.

D. Discriminability vs. Fragility

This section illustrates the diferences between the previously
reported concept of fragility and the concept of discriminability
discussed in this paper. In Fig. 8 we highlight the bits from one
of the datasets used in the paper (BATH) where the largest dif-
ferences in the fragility and discriminability z-scores z() were
observed (using Gabor filters), i.e., z(Ψ[x, y])− z(1-fragility)
Here, red / orange regions are particularly discriminative but -
even though- their bits have a relatively large fragility, whereas
blue colours represent bits that are not fragile, but still have
not particularly high discriminability. The less interesting cases
(bits consistent and non-fragile or bits non-consistent and
fragile) have values near to 0. This clearly distinguishes both
concepts, i.e., apart fragility, there is a new family of bits
(discriminability), which can be used to develop better iris
recognition algorithms in the future.

VI. CLASSIFIERS DISCRIMINABILITY AND PERFORMANCE
ANALYSIS

The discriminability provided by each bit is the root of
iris recognition performance. However, this value regards the
performance of individual players (bits), and not of the team
(iris code), which is the one that actually matters. Various
highly discriminating bits do not necessarily constitute a good
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Fig. 8. Illustration of the differences between the fragilily and discriminability
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(results obtained using Gabor g() kernels, in the BATH dataset).

recognition system, if they are strongly correlated. This kind
of analysis requires to obtain the conditional probabilities
P
(
(
∑t
k∗=1 C

(p)
k∗ ⊕ C

(q)
k∗ ) = c |Ha

)
and P

(
(
∑t
k∗=1 C

(p)
k∗ ⊕

C
(q)
k∗ ) = c |H0

)
, for c ∈ {0, . . . , t}, where k∗ denotes the

index of the bits in the iris code.

A. Feature Selection and Performance

To obtain the best combination of bits for iris codes, three
families of feature selection algorithms were considered. The

simplest was the Fisher-score [10]. The goal is to find a feature
subset such that in the projected subspace the distances between
points in different classes are maximal, while maintaining the
distances between points in the same class as small as possible.
For simplicity, let Ck denote the kth bit of feature set. The
objective function is given by:

F (Ck) =

∑
j tj(µ

k
j − µk)2∑

j tj(σ
k
j )2

, (7)

where µkj and σkj are the mean and standard deviation of the
kth bit in the jth (∈ {0, 1}) class. µk is the overall mean of
the kth feature and tj the number of elements in the jth class.
After obtaining the Fisher-scores, the top-m ranked features
were selected.

The Minimum Redundancy - Maximum Relevance (mRMR)
algorithm [22] for discrete data was also considered. For every
pair of features, the mutual information was obtained:

M(Cp, Cq) =

1∑
i=0

1∑
j=0

P (Cp = i, Cq = j)

. log2

P (Cp = i, Cq = j)

P (Cp = i)P (Cq = j)
. (8)

The minimum redundancy condition of a feature set S
corresponds to min

∑
i∈S

∑
j∈S M(Ci, Cj). Then, using the

class variable h ∈ {0, 1}, the maximum relevance of S is given
by max

∑
j∈S M(h,Cj). Both terms enable to select features

iteratively:
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max
i∈Ω

[
M(i, h)− 1

S

∑
j∈S

M(i, j)
]
. (9)

This process attains a near optimal solution in O(|S|N) time
complexity, with |.| denoting the set cardinality. Finally, the
Sequential Floating Feature Selection (SFFS) algorithm [29]
was used, with the objective function:

J({Cp, S}) =
|µ{Cp,S}0 − µ{Cp,S}a |√(
σ
{Cp,S}
0

)2

+
(
σ
{Cp,S}
a

)2
, (10)

where µ and σ are the mean and the standard deviations. The
subscript denotes the class and the superscript {., .} is the con-
catenation operator. Starting with the empty set S = ∅, at each
iteration the best feature was taken: C∗p = argp max J(Cp,S)
and added to the selected set S = {S, C∗p}. After each
insertion, the exclusion of features previously selected was
considered: C∗p = argp max J({S \ Cp}), where ”\” denotes
set complement. Whenever J({S \ C∗p}) > J(S), C∗p was
excluded from S.

Fig. 9 gives the ROC curves with respect to the feature
selection algorithms. For all cases, 2,048 features were selected.
The upper row expresses the results for Gabor filters and the
bottom row regards the results for MLDF filters. In summary,
the SFFS algorithm fed by MLDF features produced the
best results for all datasets, in some cases with substantial
differences in performance with respect to the remaining
configurations. For Gabor kernels it was harder to perceive
which was the best feature selection algorithm, but the mRMR
algorithm got the best results in half of the cases. Table II
summarizes the performance (in terms of the d’ index 11 and of
the Area Under Curve (AUC) value) for each data set, feature
selection algorithm and type of kernel used in feature encoding.

It is evident that MLDF filters performed better than Gabor,
both in NIR and VW data. This might be due to the interlacing
structure of the muscles in the vascularised stroma of the
iris, that augment the correlation of intensities between non-
adjacent regions. As pointed out by Daugman [4], Gabor kernels
optimally resemble the receptive field profiles of neurons in
the visual cortex of the brains of mammals and - as such -
exclusively analyze adjacent patterns. Also, MLDFs are actually
a generalization of Gabor filters, meaning that any Gabor kernel
can be roughly modeled by a MLDF parameterization.

Fig. 10 illustrates the iris regions from where the best bits are
more frequently extracted, noting the stable patterns obtained
among all the datasets: for Gabor kernels, the lateral and
lower parts of the iris are the most important, almost ignoring
the upper parts. Note that the difference between the values
observed for the bottom / upper parts of the iris is more
notorious in the Gabor than in MLDFs kernels. This is due to
the fact that Gabor kernels analyse adjacent patterns, and to
extract a pattern from the upper part of the iris, a large and
continuous patch should be considered noise-free (which is not
too frequent, due to eyelids and eyelashes). In opposition, as
MLDFs analyse non-adjacent patterns, enable that even small
patches of the upper regions of the iris can be used to extract

an useful bit.
Both for Gabor and MLDF kernels, the middle bands are

the most frequently selected and can be considered the best
for biometric recognition. In opposition, regions near the
boundaries the worst, both in NIR / VW data and Gabor
/ MLDF filters. Finally, note the higher homogeneity of the
values obtained for MLDF filters than for Gabor, where highly
salient regions appear in small patches of the iris.

B. Codes Quantization: How Much Discriminating Information
Is Lost?

In the most acknowledged iris recognition algorithm, only
phase information is used in recognition. Amplitude informa-
tion is not considered reliable, as it depends of imaging contrast,
illumination and camera gain. Accordingly, Hollingsworth et
al. [13] observed that most inconsistencies in iris codes are
due to the coarse quantization of the phase response, and
disregarded bits from filter responses near the axes.

Even considering the afore arguments reasonable, we as-
sessed the amounts of discriminating information contained in
the filter responses near the axes. With respect to the traditional
strategy of keeping only the sign of coefficients (function A)
in Fig. 11), two other strategies were considered: a linear
mapping of the magnitude of the responses, yielding real-
valued coefficients matched by the `2 norm (function C) in
Fig. 11); and a trade-off of both strategies, according to a
sigmoid-based transform that maps large magnitude values to
the 0/1values, but weights values near the axes to real values
in the [0,1] interval. In this case, the `2 norm was also used
as matching function.

The ROC curves given at the right side of Fig. 11 compare
the recognition performance with respect to each quantization
strategy and Table III summarizes the results, giving the Area
Under Curve (AUC) and the decidability index d’ that, as
suggested by Daugman [6], measures how well separated the
genuine / impostor distributions are:

d′ =
|µG − µI |√
1
2 (σ2

I + σ2
G)
, (11)

where µI = 1
k

∑
i d
I
i and µG = 1

m

∑
i d
G
i are the means of the

genuine (G) and impostor (I) scores and σI = 1
k−1

∑
i(d

I
i −

µI)
2 and σG = 1

m−1

∑
i(d

G
i − µG)2 their standard deviations.

Two opposite conclusions were drawn: for Gabor filters, the
best results were observed when using the traditional sign()
quantization function. In this case, using scalars instead of sign
bits even decreased the recognition performance. Oppositely,
for MLDF filters, the best results were observed when using
the proposed sigmoid function, i.e., when the coefficients of
small magnitude were also considered for the matching process.
This points for the conclusion that there is actually reliable
discriminating information in the coefficients near the origin.
However, these coefficients are less reliable than those with
large magnitude, as in no case the linear mapping strategy got
results close to any of the remaining strategies.

Note that the above conclusions were drew based on the
reported AUC and d’ values, which in the large majority of
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Fig. 9. Comparison between the recognition performance observed per data set and type of kernel, according to the best three feature selection strategies.

TABLE II
SUMMARY OF THE RECOGNITION PERFORMANCE OBSERVED FOR EACH DATA SET, WITH RESPECT TO THE TYPE OF KERNELS AND THE FEATURE SELECTION

ALGORITHMS.

Dataset BATH CASIA-Iris-Distance UBIRIS.v2 FRGC
Feat. Feat. Sel. d’ AUC d’ AUC d’ AUC d’ AUC
Gabor Fisher-score 7.54 ± 0.01 0.991 ± 0.002 3.36 ± 0.01 0.970 ± 0.002 1.43 ± 0.01 0.8471 ± 0.006 1.28 ± 0.02 0.809 ± 0.003

MLDF Fisher-score 7.05 ± 0.01 0.990 ± 0.002 2.79 ± 0.01 0.962 ± 0.002 0.74 ± 0.01 0.779 ± 0.007 1.29 ± 0.02 0.809 ± 0.006

Gabor mRMR 6.35 ± 0.02 0.989 ± 0.001 3.44 ± 0.02 0.971 ± 0.002 1.52 ± 0.02 0.812 ± 0.006 1.41 ± 0.02 0.838 ± 0.004

MLDF mRMR 5.81 ± 0.01 0.987 ± 0.001 3.02 ± 0.01 0.968 ± 0.003 0.79 ± 0.01 0.707 ± 0.004 1.53 ± 0.01 0.851 ± 0.004

Gabor SFFS 8.79 ± 0.01 0.994 ± 0.001 3.20 ± 0.01 0.976 ± 0.001 1.23 ± 0.01 0.818 ± 0.006 1.12 ± 0.02 0.778 ± 0.006

MLDF SFFS 9.15 ± 0.01 0.994 ± 0.001 3.89 ± 0.01 0.990 ± 0.001 1.88 ± 0.01 0.904 ± 0.003 1.74 ± 0.01 0.892 ± 0.006
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Fig. 10. Most important regions of the iris for biometric recognition. Results express how many times each position of the iris was considered to extract bits
selected to be included in the final iris codes.
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Fig. 11. At left: Three different strategies for code quantization: A) binary; B) sigmoid function; and C) linear mapping. At right: recognition performance
with respect to A), B) and C) code quantization strategies for BATH (upper-left plot), CASIA-Iris-Distance (upper-right), UBIRIS.v2 (bottom-left) and FRGC
data sets (bottom-right).

the cases were observed to be in agreement. The exceptions
occurred mostly in cases where the shape of the genuine
/ impostor distributions were the farthest from Gaussian
distributions. For these particular cases, we relied mostly in the
AUC value, as it does not require a specific data distribution
to report meaningful results.

VII. CONCLUSIONS

This paper introduced the concept of bit discriminability, for
iris recognition purposes. As a complement to the previously
proposed concept of bit fragility, we noticed that not only
bits have different probabilities of flipping their values among
samples of an iris, but also the probability of observing agreeing
bit values for different irises varies in a statistically significant
way. Even though this phenomenon was observed both for
NIR and VW data, it is much more evident for the latter
wavelength, which should be due to the corneal reflections that
are determined by the ambient light and appear (typically) in
the same positions of the irises in a data set.

Based on the proposed concept of bit discriminability, we
compared the effectiveness of each region of the iris for
biometric recognition, with respect to multi-spectral data and
to two widely used types of filters (Gabor and MLDFs). Our
main conclusions were:
• Iris Anatomy: 1) there is a poor correlation between the

amount of information in iris patches and their usability
for biometric recognition. This gives space for future
research in terms of novel iris feature encoding / matching
algorithms, particularly for NIR data, where the highest
amounts of local information were observed. However,
note that by converting the VW data to grayscale we
disregarded a substantial amount of the information in this
kind of images. In the scope of color information, there is
evident space for further analysis, as the effectiveness of
different color spaces, or of different linear / non-linear
strategies to fusing color channels; 2) the bottom parts

of the iris are less likely to be occluded by eyelids than
the upper parts. Shadows are more frequent in the upper
parts, particularly when illumination from above is used.
However, note that commercial iris systems do not use
illumination from above; 3) there is a direct correlation
between the size of the filters and the discriminability of
the resulting bits. This turns the middle radial bands of
the iris as the most important, as they are those where
the largest filters can be used there without surpassing
the iris boundaries; 4) there is no evidence that either the
temporal / nasal sides of the iris should be preferred over
the other. However, in case of illumination from the side,
shadows by the nose are likely to appear in the iris, which
might also decrease performance;

• Filters: 1) MLDFs provide better performance than Gabor
kernels due to their ability of exploiting non-adjacent
patterns. This property is particularly interesting for tissues
with interlacing fibers, such as the human iris; 2) there is
a strong agreement between the best iris regions obtained
for MLDF and Gabor filters, suggesting that the choice
for the best regions to perform iris recognition is relatively
independent of the kind of filters used;

• Data Spectrum and Discriminating Information: 1) Both
in NIR and VW data, the signal magnitude carries
valuable discriminating information, which should be
particularly useful for hard acquisition environments; 2)
NIR data provides more discriminating information than
VW data, particularly in the pupillary bands; 3) the bit
discriminability in VW data appears to spread in a more
uneven way than in NIR data. This topic should be subject
of further research, as we cannot determine wether this
was due to the evidently wilder acquisition setups of the
VW data sets than of the NIR sets used in this paper.
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TABLE III
VARIATIONS IN RECOGNITION PERFORMANCE WITH RESPECT TO DIFFERENT STRATEGIES FOR CODE QUANTIZATION.

A) sign() B) sigmoid() C) linear (no quantization)
Dataset Features d’ AUC d’ AUC d’ AUC
BATH Gabor 8.79 ± 0.01 0.994 ± 0.001 7.08 ± 0.01 0.992 ± 0.001 6.52 ± 0.01 0.990 ± 0.001

BATH MLDF 9.15 ± 0.01 0.994 ± 0.001 8.82 ± 0.01 0.993 ± 0.001 5.89 ± 0.01 0.988 ± 0.001

CASIA-Iris-Distance Gabor 3.20 ± 0.01 0.982 ± 0.001 3.16 ± 0.01 0.982 ± 0.001 3.05 ± 0.02 0.971 ± 0.001

CASIA-Iris-Distance MLDF 3.89 ± 0.01 0.990 ± 0.001 4.12 ± 0.01 0.984 ± 0.001 3.13 ± 0.01 0.982 ± 0.001

UBIRIS.v2 Gabor 1.23 ± 0.01 0.813 ± 0.006 1.16 ± 0.02 0.793 ± 0.007 0.82 ± 0.02 0.720 ± 0.006

UBIRIS.v2 MLDF 1.88 ± 0.01 0.904 ± 0.003 1.96 ± 0.01 0.917 ± 0.003 1.02 ± 0.01 0.766 ± 0.009

FRGC Gabor 1.12 ± 0.02 0.792 ± 0.006 1.01 ± 0.02 0.770 ± 0.008 0.83 ± 0.01 0.731 ± 0.007

FRGC MLDF 1.74 ± 0.01 0.892 ± 0.006 1.88 ± 0.02 0.908 ± 0.002 1.47 ± 0.02 0.849 ± 0.007

Automation (CASIA).
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