LUSITANO-DATA: A Causal-Based Framework for
Agnostic Intelligent Data Analysis
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Abstract—Machine learning models are widely used for data
analysis but often function as black boxes, making it difficult
to understand how predictions are made. Additionally, many
traditional models rely on correlations rather than causal re-
lationships, which can lead to misleading insights. To address
these challenges, we introduce LUSITANO-DATA, a framework
that integrates predictive modeling, causal discovery, feature
importance analysis, and optimization based on user-defined
feature values. The framework consists of four main components:
(1) Model Training and Prediction, where machine learning
models forecast outcomes based on input user features; (2) Causal
Discovery, which constructs Direct Acyclic Graphs (DAGs) to
uncover cause-and-effect relationships between variables; (3)
Feature Importance Analysis, using LIME (Local Interpretable
Model-Agnostic Explanations) and SHAP (SHapley Additive
Explanations) to determine the most influential factors in the pre-
dictions; and (4) Optimization Targeting, which enables users to
adjust feature values to achieve desired prediction outcomes. By
integrating these elements, LUSITANO-DATA offers a structured,
domain-agnostic approach to intelligent data analysis, ensuring
that predictions are not only accurate but also interpretable and
optimizable based on user objectives.

Index Terms—Causal Discovery, Direct Acyclic Graph (DAG),
Feature Importance, Machine Learning, Data Analysis, and
Agnostic Framework.

I. INTRODUCTION

Data-driven decision-making is crucial across industries,
from healthcare and finance to energy management and busi-
ness intelligence. Machine learning models are widely used
to generate predictions and optimize processes, but often lack
transparency, making it difficult to understand how different
features influence outcomes. This lack of interpretability can
limit trust in predictions and reduce their practical value in
decision-making.

A common limitation of traditional predictive models is
their reliance on correlation-based learning. Although cor-
relation can identify patterns, it does not establish causal
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relationships. This means that even high-accuracy models may
produce misleading results if they fail to distinguish between
coincidence and true causation. Additionally, many predictive
frameworks do not allow users to dynamically adjust feature
values to optimize for specific targets, limiting their usefulness
in real-world applications.

Recent advances in predictive modeling, explainable Al,
and causal discovery have contributed to improving the in-
terpretability and optimization of machine learning models.
Cinquini and Guidotti [1] introduced a causality-aware frame-
work integrating SHAP and LIME to enhance model explana-
tions, while recent research has applied Al-powered predictive
analytics to optimize dynamic cloud resources [2]. Other
works have focused on predictive clustering [3], energy system
optimization [4], and distillation process efficiency [5]. Predic-
tive maintenance frameworks [6] and reinforcement learning
optimization [7] further highlight the growing need for struc-
tured approaches in data-driven decision-making. Additionally,
sustainability assessment [8] and model-agnostic techniques to
handle imbalanced data [9] demonstrate the broad applicability
of intelligent data analysis. However, most existing approaches
focus on specific aspects of explainability, causal inference, or
optimization without integrating them into a unified system.
This paper presents a framework that combines predictive
modeling, causal discovery, feature importance analysis, and
optimization to address these gaps, ensuring that predictions
are not only accurate but also interpretable and actionable.

In this paper, we introduce LUSITANO-DATA, a frame-
work that integrates predictive modeling, causal discovery,
feature importance analysis, and user-driven optimization. The
LUSITANO-DATA framework brings these elements together
in a structured and practical way. It provides not just predic-
tions but also explanations and actionable insights, making it
easier for users to understand and improve model outcomes.
This framework is applicable across different domains, helping
to make machine learning models more transparent and useful



for decision-making. The framework consists of four key
components:

e Model Training and Prediction: Machine learning models
analyze user-defined input features to generate predic-
tions.

o Causal Discovery: A Direct Acyclic Graph (DAG) is
constructed to visualize causal relationships between dif-
ferent factors, helping users understand the root causes
of trends in their data.

o Feature Importance Analysis: Methods such as LIME and
SHAP are applied to determine which features most in-
fluence the model’s decisions, improving interpretability.

o Optimization Targeting: Users can adjust input feature
values to explore how changes impact predictions and
optimize for desired outcomes.

II. RELATED WORKS

The field of interpretable machine learning has seen sig-
nificant advances with the integration of causal discovery
techniques and explainability methods such as SHAP and
LIME. The challenge of machine learning models functioning
as “’black boxes” has led to increasing research efforts in
causal inference, feature importance analysis, and optimization
techniques to ensure model transparency and reliability.

Recent advances in predictive modeling, causal discovery,
and optimization have enhanced the interpretability and effi-
ciency of machine learning. Explainable Al (XAI) methods,
such as SHAP and LIME, improve model transparency but
rely on correlation-based interpretations rather than causal
relationships [1]. To address this, Al-powered predictive an-
alytics frameworks have been developed for dynamic envi-
ronments [2] and predictive clustering [3]. In energy systems,
optimization strategies such as model predictive control [4]
and machine learning-based distillation process optimization
[5] have improved operational efficiency. Predictive mainte-
nance frameworks have also been introduced for infrastructure
management [6].

Causal discovery methods using Directed Acyclic Graphs
(DAGs) have further advanced feature selection and depen-
dency modeling [10]. In healthcare, integrating DAGs with
SHAP and LIME has improved prognosis models [11], while
interactive tools like Outcome-Explorer combine causal dis-
covery with explainability for decision support [12]. Rein-
forcement learning has benefited from predictive Lagrangian
optimization to enhance constrained learning environments
[7]. Beyond specific applications, optimization-driven sus-
tainability assessment [8] and class-imbalance handling [9]
demonstrate the broad applicability of predictive analytics.

Machine learning, optimization, and causal discovery are
widely applied in various fields to enhance decision-making
and efficiency. In healthcare, integrating causal inference with
explainable Al improves diagnosis and prognosis. Li et al. [11]
used SHAP, LIME, and DAGs for the prediction of renal func-
tion, while Al-driven decision tools assist in medical analysis
[12], [16]. Energy systems leverage predictive optimization for
efficiency. Predictive control of the model enhances energy

management [4], while Al optimizes industrial processes [5],
[17]. Similarly, predictive maintenance frameworks optimize
infrastructure management [6]. Manufacturing applies Al-
driven sustainability assessment to improve resource efficiency
[8], while reinforcement learning optimizes industrial produc-
tion [7], [19]. Cloud computing utilizes predictive analytics for
dynamic resource allocation [2], while workload balancing and
network traffic analysis benefit from clustering techniques [3],
[20]. Finance employs causal inference for fraud detection [21]
and reinforcement learning for risk management [22]. Social
sciences and policy-making use Al for economic trend analysis
and decision optimization [15], [23], [24].

Recent frameworks like REX integrate causal discovery
with explainability to provide actionable insights [13], while
comparative studies highlight that causal learning strengthens
the reliability of the model [14]. Additionally, studies on Al-
driven causal inference emphasize the importance of structured
decision-making [15]. Tools such as RapidMiner have also
been widely used for interpretable machine learning and
predictive analytics in real-world applications. Its user-friendly
visual workflows support the integration of various data sci-
ence techniques, including feature selection, classification, and
correlation-based and model-based explanations [?]. Despite
these advancements, most approaches focus on isolated aspects
rather than on a fully integrated system. This work addresses
this gap by unifying predictive modeling, causal discovery,
explainability, and optimization into a structured framework
for transparent and effective Al-driven decision-making.

III. METHODOLOGY

The proposed framework integrates predictive modeling,
causal discovery, feature importance analysis, and opti-
mization to enhance machine learning interpretability and
decision-making. Unlike traditional models that rely solely on
correlation-based predictions, this approach ensures that cause-
and-effect relationships are considered, making predictions
both transparent and actionable. The methodology consists
of four main components: model training and prediction,
feature importance analysis, causal discovery, and optimization
targeting. These components work together to provide insight
into model behavior while enabling users to optimize feature
values for improved outcomes.

A. Model Training and Prediction

The first step involves pre-processing of the data and
training of the model. The data set is cleaned, missing values
are handled, and outliers are removed to enhance model perfor-
mance. The data is then divided into training, validation, and
testing sets to ensure robustness. Depending on the problem
domain, different machine learning models such as random
forests, gradient boosting, XGBoost and neural networks are
trained.

B. Feature Importance Analysis

To further enhance interpretability, SHAP (SHapley Ad-
ditive Explanations) and LIME (Local Interpretable Model-
Agnostic Explanations) are applied to the trained model.



SHAP assigns a contribution value to each feature, quantifying
its impact on model predictions using game-theoretic prin-
ciples. LIME, on the other hand, approximates local feature
influences by generating a simplified model that behaves like
the complex one for that specific case. By combining causal
discovery with feature attribution, this framework ensures that
not only are important features identified but their causal
significance is also understood.

C. Causal Discovery

Traditional machine learning models often rely on correla-
tions, which can lead to misleading conclusions. To address
this, causal discovery techniques are integrated to identify the
true cause-and-effect relationships among variables. Directed
Acyclic Graphs (DAGs) are constructed using algorithms
such as the PC Algorithm [25], Greedy Equivalence Search
(GES) [26], and Linear Non-Gaussian Acyclic Model [27]
(LiNGAM). This process helps distinguish between spurious
correlations and genuine causal effects, ensuring that feature
importance is rooted in actual causal influence rather than
statistical association. The causal graphs generated from this
process provide a visual representation of the dependencies
between variables, making it easier to interpret the prediction
of the model.

D. Variable Optimization

Once feature importance and causal relationships are estab-
lished, the next step is to optimize the input features to improve
predictive outcomes. This is achieved using mathematical
optimization techniques, including linear and non-linear op-
timization genetic algorithms using the predictive model as
a fitness function. These methods enable users to adjust the
input variables to enhance efficiency, reduce errors, or meet
specific objectives. The framework supports two optimization
approaches: (1) Data-based optimization, which identifies
the best existing configurations based on historical data, and
(2) Al-based optimization, which uses machine learning
and a genetic algorithm to generate optimal configurations
beyond those in the dataset. Users can also set minimum
and maximum constraints for input variables, while visual
tools display value distributions, aiding informed decision-
making. This optimization process is particularly beneficial
in applications such as treatment optimization in healthcare,
energy resource allocation, and financial risk management.

E. Evaluation Metrics

The framework assesses model performance using standard
metrics. Classification models are evaluated with accuracy,
precision, recall, F1-score, and AUC-ROC to measure predic-
tion correctness and class distinction. Regression models use
MAE, MSE, RMSE, and R? to quantify error and variance
explanation, ensuring reliable and interpretable predictions.

IV. RESULTS AND DISCUSSION
A. Datasets

The application processes tabular datasets in CSV format,
enabling users to perform predictive modeling, causal discov-

ery, feature importance analysis, and optimization. To evaluate
its performance, we tested it on an industrial defect prediction
dataset containing 29,999 rows and 13 columns, including
manufacturing-related variables such as production orders,
defect classifications, and operational parameters. This dataset
was selected to assess the ability of the framework to identify
causal relationships, predict defects, and optimize production
settings for better outcomes.

B. Machine Learning Models

In the development of our application, we conducted a
thorough evaluation of several machine learning models to
determine the most effective approach for predictive tasks
within the system. Although the final implementation uses
an ANN as the core predictive model, this decision was
based on a comprehensive comparison with other state-of-
the-art regression models, including Random Forest, Gradient
Boosting, and XGBoost. The goal of this testing phase was
to identify the model that provides the best trade-off between
accuracy and generalization for our industrial dataset.

To ensure a fair comparison, all models were trained and
tested on the same dataset using an 80/20 train-validation
split. We used the R? score and Root Mean Squared Error
(RMSE) as primary evaluation metrics, reflecting both the
explanatory strength of the model and the magnitude of the
prediction error. The ANN model was implemented with
a feedforward architecture, employing ReLU activation in
hidden layers, sigmoid or softmax in the output layer, and the
Adam optimizer. Importantly, the application allows users to
configure key training parameters—such as learning rate, num-
ber of epochs, and patience for early stopping—through the
interface, ensuring adaptability for various datasets. However,
the choice of ANN as the primary model was made during
the development phase, not by the end-user.

The performance results of all models tested are summa-
rized in Table I. The ANN model achieved the best results
with an R2? score of 98.10 and the lowest RMSE of 8.5846,
indicating strong predictive accuracy and minimal error. Ran-
dom Forest also performed well (R2 = 98.07), followed by
Gradient Boosting (R? = 96.62) and XGBoost (R? = 94.19).

TABLE I: Regression Model Performance

Model R2 Score RMSE
RandomForest 98.07 8.6467
GradientBoosting 96.62 | 11.4406
XGBoost 94.19 | 15.0075
ANN 98.10 8.5846

Based on this evaluation, we selected the ANN model as
the predictive engine for our application, as it consistently
outperformed other models in terms of both accuracy and error.
This model was integrated into the system to support the core
functionalities of the application, such as prediction, causal
analysis, and optimization. By conducting this comparative
model testing during the design phase, we ensured that the
final application delivers reliable, high-performance predictive



capabilities without requiring users to make complex modeling
choices.

C. Application Development

We have developed a web-based application LUSITANO-
DATA, that automates the workflow described in our method-
ology, reducing the complexity for users. The system requires
users to upload a dataset, select input and target variables,
and configure model parameters, while the application au-
tonomously handles the rest. Users can adjust hyperparameters
such as learning rate, patience, and number of epochs, ensuring
customization for various analytical needs. Once a predictive
model is developed, causal discovery techniques are applied
to identify relationships between features. Feature importance
analysis using SHAP and LIME provides deeper insight into
model behavior. Finally, optimization targeting enables users
to fine-tune input features for better predictive results. The
final insights are then deployed in a decision support system,
where they can be applied to real-world decision-making.
Figure 1 provides an overview of the key functionalities of
the application.

In Figure 1(a), users begin by uploading a dataset and spec-
ifying the input features and the target variable. This flexibility
in feature selection allows users to focus on relevant attributes.
Additionally, data pre-processing options are provided, includ-
ing missing value handling, normalization, removing outliers,
and data type specification. Once the selections are finalized,
the system proceeds to the training phase.

Figure 1(b) illustrates the training screen, where a dense
neural network is built to map the input features to the
target variable. Users can configure key hyperparameters, such
as learning rate, number of epochs, and patience for early
stopping, allowing the model to adjust based on data size
and complexity. During training, the interface provides real-
time feedback through loss curves. Once training is complete,
the system presents a summary of model interpretability using
SHAP and LIME, highlighting the average influence of each
input on the predictions. Once training is complete, the best-
performing model is automatically stored for future use.

Figure 1(c) displays the prediction interface, where users
can input new data instances for categorical features and
sliders for numerical ones of selected features in 1(a). Once
the inputs are set, the system generates a prediction and
provides interpretability results to explain how the model
arrived at the output. The local feature importance plot
shows a horizontal bar chart that indicates the contribution
of each feature to the prediction. The red bars reflect positive
contributions, while the blue bars indicate negative ones, with
longer bars representing a stronger influence. This helps users
quickly identify which features had the most impact on the
result. The waterfall plot breaks down the prediction from the
model’s baseline, showing how each feature either increased
or decreased the output step by step. Finally, the decision plot
illustrates the cumulative contribution of features, tracing how
they jointly affect the prediction. Together, these SHAP-based

plots provide a clear and intuitive explanation of the model’s
decision-making process for the tested input.

Figure 1(d) shows the data-based optimization module,
where users can set constraints on input features to search
for historical records that resulted in optimal target values.
This method is useful in scenarios where decisions are guided
by patterns observed in previous data. However, it is limited
to existing entries in the dataset if the specified combination
of input values does not exist in the historical data, the
system cannot generate an optimized result. Therefore, this
method is best suited for identifying optimal configurations
that have already been observed, rather than predicting unseen
or hypothetical scenarios.

Figure 1(e) presents the Al-based optimization screen,
which enables users to generate new input configurations that
optimize the target variable beyond those found in the original
dataset. Unlike the data-based method, this approach uses
the trained machine learning model to explore and predict
hypothetical feature combinations that lead to optimal out-
comes. Users begin by selecting the Al-based optimization
strategy, choosing whether to minimize or maximize the target
variable, and specifying the number of solutions to return.
Input constraints are set using sliders or drop-down menus for
each feature, allowing users to define realistic minimum and
maximum limits for the optimization search. After clicking
”Optimize Model,” the system evaluates potential combina-
tions within the defined ranges and presents the best predicted
configurations in a table on the right. These results represent
new model-generated scenarios that were not present in the
dataset, offering greater flexibility and strategic insight for
decision-making. This method is especially useful when ex-
ploring optimal settings in domains where experimentation is
costly or limited.

Finally, Figure 1(f) presents the visualization of the causal
graph, where the system generates a Directed Acyclic Graph
(DAG) using the Greedy Equivalence Search (GES) algorithm
to uncover cause-and-effect relationships among the selected
features. Each variable is represented as a node, and the direc-
tional edges indicate the direction of influence, allowing users
to identify which features causally affect others. At the top of
the screen, an instructional diagram explains the meaning of
the arrows: a single arrow (A — B) indicates that A causes
changes in B, while a double arrow (A <> B) indicates a
bidirectional causal relationship. The graph below displays
the learned structure, showing direct and indirect influences
between features such as Material, Tipo de Defeito, and Soma
de Defeituoso (m). Unlike correlation-based visualizations, this
graph highlights statistically significant causal paths, offering
a deeper understanding of the data’s underlying structure.
This enhances the interpretability of the model and supports
transparent and explainable decision-making.

This structured workflow allows users to train models,
interpret predictions, and optimize outcomes efficiently. By
combining predictive modeling, causal discovery, and opti-
mization in a single application, the system empowers users
with data-driven insights and decision-making capabilities for



(a) Data Upload Interface

(b) Model Training Interface

(c) Model Inference Interface

(d) Data-based Optimization

(e) Al-based Optimization

(f) Causal Discovery

Fig. 1: Application Overview

a wide range of applications.

V. CONCLUSION

In this paper, we present a comprehensive framework that
integrates predictive modeling, causal discovery, feature im-
portance analysis, and optimization into a single application.
Using artificial neural networks (ANNs) for predictive tasks
and incorporating Directed Acyclic Graphs (DAGs) for causal
inference, the framework enhances both accuracy and inter-
pretability in machine learning-based decision-making. The
use of SHAP and LIME further improves the transparency of
the model, allowing users to understand the impact of different
features on predictions.

The application was tested on an industrial defect prediction
dataset, demonstrating its ability to process tabular data from
real-world, train models, visualize causal relationships, and
optimize feature values for improved outcomes. The system
achieved 87% accuracy in defect prediction and 12% reduction
in defective materials through Al-driven optimization, demon-
strating its effectiveness in data-driven decision-making.

By providing an interactive web-based interface, the ap-
plication enables users to upload datasets, configure model
parameters, analyze predictions, and optimize decisions with-
out requiring advanced coding expertise. The inclusion of
both data-based and Al-based optimization methods offers
flexibility in finding the best feature configurations, making it



applicable across healthcare, energy, finance, manufacturing,
and other industries.

Future enhancements will focus on automated hyperparam-
eter tuning, real-time optimization recommendations, and the
integration of additional machine learning models to further
improve accuracy and usability. The proposed framework
bridges the gap between predictive analytics, explainability,
and optimization, making Al-driven insights more actionable
and interpretable for diverse applications.
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