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Abstract

The use of pan-tilt-zoom (PTZ) cameras for capturing
high-resolution data of human-beings is an emerging trend
in surveillance systems. However, this new paradigm en-
tails additional challenges, such as camera scheduling, that
can dramatically affect the performance of the system. In
this paper, we present a camera scheduling approach ca-
pable of determining - in real-time - the sequence of ac-
quisitions that maximizes the number of different targets
obtained, while minimizing the cumulative transition time.
Our approach models the problem as an undirected graphi-
cal model (Markov random field, MRF), which energy mini-
mization can approximate the shortest tour to visit the max-
imum number of targets. A comparative analysis with the
state-of-the-art camera scheduling methods evidences that
our approach is able to improve the observation rate while
maintaining a competitive tour time.

1. Introduction

The co-existence of humans and video surveillance cam-
eras in outdoor environments is becoming commonplace in
modern societies. This new paradigm has raised the inter-
est in automated surveillance systems capable of acquiring
biometric data for human identification purposes. Consid-
ering that these systems are aimed at covering large areas,
the use of PTZ-based systems is a popular choice, since the
mechanical properties of these devices allow to zoom-in on
arbitrary scene locations. In such systems, a master-slave
configuration is usually adopted [12]. The master camera is
responsible both for detecting and tracking subjects in the
scene, so that it can instruct the active camera to point to
specific locations. In these scenarios is quite common that
the number of targets exceeds the available active cameras,
which demands the use of a schedule technique to maximize
the number of targets imaged and the number of shots taken
from each one.

In this paper, we argue that a good schedule technique
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Figure 1. Illustrative example of the camera scheduling problem:
given the actual and the estimated locations of a set of four targets
in the scene, the goal is to determine the tour that a PTZ camera
(C) should perform to observe every target while minimizing the
cumulative transition time.

should plan the order to visit each target in the minimum
amount of time, in order to start the acquisition process
as soon as possible and maximize the number of samples
taken from the subjects in the scene. As noted in previous
works, the exhaustive solution for this problem is O(N ! ),
N being the number of targets in the scene. Although
this brute-force strategy is feasible for a reduced number
of targets, the real-time nature of this problem prohibits
the use of an exhaustive search for more than six tar-
gets [2]. Accordingly, we propose a MRF-based approach
to estimate an approximate solution in real-time. When
compared to previous works, this formulation has two
major advantages:

1. it is able to determine an approximate solution in less
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than 30 ms for 15 targets;

2. is general enough to accommodate multiple cost
functions. In this work, our MRF model incorporates
both the transition cost and targets deadlines, in
order to determine the shortest tour that observes the
maximum number of targets. However, the proposed
model can be easily customized to specific scenarios
(e.g., prioritize frontal faces).

To demonstrate the validity of our approach, we have
carried out a performance comparison with the state-of-
the-art camera scheduling approaches using targets walks
generated from real-world data to ensure realistic and
plausible human paths. The observed results show that the
proposed approach is able to successfully observe more tar-
gets in time similar to the most competitive state-of-the-art
methods.

Contributions: 1) The dynamic scheduling of PTZ
cameras is modelled as a graph-based problem whose
solution can be approximated by the energy minimization
of a MRF; 2) A realistic virtual simulation for camera
scheduling evaluation purposes is described, i.e. we build
on the works [1] and [15] to generate realistic and plausible
human trajectories; 3) A comparative analysis with state-
of-the-art camera scheduling algorithms evidences that our
approach improves the observation rate while maintaining
a competitive tour time.

Organization: A review of the existing camera schedul-
ing approaches is outlined in section 2. Section 3 presents
the proposed approach and section 4 describes the virtual
path generation technique. The experimental results are
presented in section 5 and conclusions are outlined in the
section 6.

2. Related Work
Camera scheduling in PTZ-based systems can be broadly

divided in coverage and saccade approaches. In the former,
the cameras are set in an intermediate zoom state so that
multiple targets are observable by the same device. The goal
is to maximise the number of targets seen by the complete
set of cameras [16, 9, 7].

On the contrary, in a saccade approach each camera just
observes one target at a time. A sequence of saccades is
planned, in real-time, to maximize the number of differ-
ent targets observed and minimize the cumulative transition
time. Some works have presented solutions to variants of
this problem [10], but Costello et al. [4] were the first to ex-
plicitly define and propose a solution to this problem. Con-
sidering the similarities with network packet routing prob-
lem, the authors proposed the use of the Current Minloss

Throughput Optimal (CMTO) to schedule a set of obser-
vations. Targets weights were determined by their residual
time to exit the scene and the observation sequence was con-
structed by minimizing the expected weighted loss, i.e the
sum of targets weights not observed. Bimbo and Pernici [2]
addressed the problem by modelling it as the kinetic trav-
elling salesman problem (KTSP), an extension of the clas-
sical travelling salesman problem where the cities positions
change over time. However, this problem has not a known
solution that runs in polynomial time, which restrains its
use in real-time scenarios. To address this issue the KTSP
is solved, by exhaustive search, for the six targets with the
shortest deadlines. A similar strategy was used in [13],
where a greedy best-first search was employed to determine
the optimal plan. Qureshi and Terzopoulos [14] relied on
greedy algorithms such as the Shortest Elapsed Time First
and weighted Round Robin (RR). The weighted RR is able
to efficiently distribute targets to different cameras, how-
ever, at each camera, the waiting list was scheduled based
on a multi-class first-come first-served (FCFS) policy, i.e.
the class was determined by the number of times the person
had been imaged. In [8] the best-first heuristic was advo-
cated as a good approximation to dynamically estimate new
observation plans. Targets were modelled as graph nodes
and transition costs were defined according to their distance
to the camera and expected time to exit the scene. Lim et
al. [11] constructed a directed acyclic graph based on the
starting time of ’task visibility intervals’, which were in-
ferred by prediction. The scheduling problem was formu-
lated as a maximal flow problem and a dynamic program-
ming scheme was proposed to solve it. Ilie and Welch [6]
relied on a greedy algorithm to determine a plan based on
geometric reasoning.

3. Proposed Method
As Figure 2 illustrates, the proposed model is composed

by N vertices, which represent the position of each target
in the sequence of saccades. Also, each vertex can be as-
signed to N different labels, corresponding to the N targets
in the scene. This structure allows to determine the order
that each target will be observed by taking into account both
the temporal constraints (vertex information) and the tran-
sition costs (pairwise relations between vertices).

Let G = (V,E) be a graph representing a MRF, com-
posed of a set of tv vertices V , linked by te edges E. The
MRF is a representation of a discrete latent random variable
L = {Li},∀i ∈ V , where each element Li takes one value
lu from a set of labels.

In this problem, a MRF configuration l = {l1, ..., ltv},
determines an acquisition sequence of N targets. Besides,
we define G to be a complete graph, whose edges encode
the cost of assigning the target lu to the ith position and the
the target lv to the jth position. The edges between con-
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Figure 2. Illustrative example of the MRF used in our approach
when four targets are in the scene. Labels encode the set of targets
in the scene, whereas the nodes correspond to the order that they
will be imaged.

secutive vertices correspond to the transition cost of mov-
ing the camera from the target u to v, whereas the edges
of non-consecutive vertices are used to avoid repetitions in
the sequence of observations. The energy of a configuration
l of the MRF is the sum of the unary θi(lu) and pairwise
θi,j(lu, lv) potentials:

E(l) =
∑
i∈V

θi(lu) +
∑

(i,j)∈E

θi,j(lu, lv). (1)

According to this formulation, determining the best tour
is equivalent to infer the random variables in the MRF by
minimizing its energy:

l̂ = arg min
l
E(l), (2)

where l̂1, ..., ˆltp are the targets index. As an example,
if four targets are considered, the configuration {2, 3, 1, 4}
determines p2 as the first subject to be visited, p3 as the
second, and so on.

In this paper, the MRF was optimized according to the
Loopy Belief Propagation [5] algorithm. Even though it is
not guaranteed to converge to global minimums on loopy
non-submodular graphs (such as our MRF), we concluded
that the algorithm provides good approximations (refer to
Section 5).

3.1. Unary and Pairwise Potentials

We first define the notation used to describe the proposed
approach.

• pu(t) = (xu(t), yu(t), zu(t)) : the 3D position of the
uth target at time t;

• α(pu) : the pan angle corresponding to the cartesian
coordinates of pu;

• β(pu) : the tilt angle corresponding to the cartesian
coordinates of pu;

• Λu(t) : expected time to target pu leave the scene;

• τ : average time required to acquire a target.

In this problem the unary costs of the first vertex have
been modelled as the transition cost to move the camera
from the actual position to each target. Besides, targets
deadline (Λi) is also taken into account by greatly penal-
izing sequences with Λi(t) < ε in last vertices:

(3)θi(lu) =


K
(
α(C)− α(pu(t)), β(C)− β(pu(t))

)
, if Λi(t) > ε,

0, Λi(t) < ε and i = 1,

∞, otherwise,

where C is the ground cartesian coordinate to which the
camera is pointing, whereas K : (α, β) → ∆ is a camera
dependent function that determines the consumed time ∆
to change pan and tilt values by α and β, respectively. The
pairwise potential between two adjacent vertices θi,j(lu, lv)
is defined as the time required to point the camera to pv
assuming that is pointing to pu:

(4)θi,j(lu, lv) =


K(a, b), if u 6= v and c(u, v) = 1,

0, if u 6= v and c(u, v) = 0,

∞, otherwise,

where a = α(pu(t + τ ∗ i)) − α(pv(t + τ ∗ j)) and
b = β(pu(t+τ ∗i))−β(pv(t+τ ∗j)). The logical function c
determines if u and v are two consecutive vertices. Besides,
the estimation of pu(t+τ∗i) is attained by predicting targets
position using a constant velocity model.

4. Virtual Path Generation
The assessment of camera scheduling performance can

be carried out using two distinct strategies: 1) integration
in a running automated surveillance system; 2) perform-
ing an independent evaluation using pre-acquired human
walks from the tracking module of a calibrated camera. In
the former case, the results may be misleading, since it is
difficult to separate the performance of the control mod-
ule from the overall system. On the other hand, relying
on pre-acquired human walks greatly limits the number of
available paths. The use of randomly generated walks can
overcome dataset size limitations, but it is highly prone to
generate non-plausible paths.
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Figure 3. Illustration of the discrete grid used to model human
transitions with respect to angular direction and velocity module.
Adapted from [1].

Consequently, we use a virtual human walk generator to
perform an independent evaluation of camera scheduling al-
gorithms. Rather than assume constant direction and veloc-
ity model [2] - which restricts data variability - we build on
the works [1, 15] to generate a virtually unlimited number
of synthetic human walks.

Let (x(t), y(t), z(t)) be the position of a target p at the
time t and v(t) the velocity vector, targets movement is
discretized into a grid with eleven possibilities in angu-
lar direction and three possibilities in acceleration ratio, as
illustrated in Figure 3. Path generation is performed by
iteratively sampling the P (θ, r) distribution to determine
p(t+1). In order to capture the typical behaviour of humans
in surveillance scenarios, the distribution P is inferred from
a set pre-acquired human walks. Additionally, we adopt
the ’toward destination’ behaviour - described in [15] - by
dynamically re-weighting P with respect to the desired des-
tination.

However, this strategy is memoryless, i.e., it does take
in account the previous (θ, r) transitions to decide the next
state, which, again, may yield non-plausible paths. To
address this issue we rely on the conditional distribution
p({θt, rt}|({θt−1, rt−1}, ..., {θt−n, rt−n}).

In our experiments, we have acquired ten paths from ten
persons walking through a parking lot of 20 m by 40 m at
ten frames per second (FPS) - corresponding to more than
30,000 human path positions - to infer P (θ, r).

Figure 4 illustrates the effect of n on path irregularities,
such as small loops. Despite higher values could improve
path reality, it would also require an higher number of train-
ing data to accurately infer the distribution p. As such, we
use n = 3 in the evaluation of the camera scheduling algo-
rithms.
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Figure 4. Examples of three virtual paths generated using the con-
ditional distribution p({θt, rt}|({θt−1, rt−1}, ..., {θt−n, rt−n})
for different values of n. Note the increasingly linear shape of
paths with respect to n.

5. Experimental Results

In this section, we evaluate the proposed approach using
a virtual simulation. To replicate the conditions of a com-
mon surveillance scenario, the scene size used was similar
to a typical parking lot (20 x 40 m) and the camera was as-
sumed to be located at (0,0,5m). Also, targets paths were
generated using the method described in section 4 and their
initial positions were randomly selected. A Hikvision DS-
2DF PTZ camera was used to estimate the function K in a
similar fashion as in [2]. All experiments were performed
in a Intel Core i7-2700K @ 3.50GHz.

Data: P , camera schedule algorithm F , service time s
Result: t1,c1
t=0;
t1=0,c1=0;
waitList={1, 2, ...,#P};
while !isempty(waitList) do

select next target p = F (P );
compute transition cost ∆;
remove p from waitList;
if Λa(t) < ε then

t1 : t1 + ∆ + s;
c1 : c1 + 1;

end
end

Algorithm 1: Pseudocode for the simulation used to eval-
uate the performance of camera scheduling approaches.

Considering that we were interested in evaluating the
time required to observe all the targets and the number of
targets successfully acquired, the simulation S was defined
as S:P → {Γ,Θ}, where P = {p1(t), p2(t), ..., pn(t)}
defines the targets positions with respect to time, Γ =
{t1, t2, ..., tk} defines the consumed time during the kth ac-



quisition tour when all the targets were in the scene, and
Θ = {c1, c2, ..., ck} the number of targets successfully ac-
quired in each acquisition tour. To avoid disparate values of
k in the same simulation for different algorithms, we opted
to restrain the simulation to a single tour, i.e. k = 1. Algo-
rithm 1 presents the pseudocode of the proposed simulation.

Our approach was compared to typical schedule rou-
tines adopted in [4, 14, 3], namely the FCFS and the Ear-
liest Deadline First (EDF). Moreover, a comparison with
the works [2] and [8], hereinafter designated as TDO and
Krahn et al., was also performed.

5.1. Cost Time

The analysis of Γ with respect to N furnishes insight
about the algorithms efficiency to acquire a set of N tar-
gets. Figure 5 depicts the results attained using 100 simu-
lations for up to 15 targets. Regarding the comparison with
naive schedule approaches - Figure 5a) - it is evident that
the MRF-based algorithm can acquire a set of N persons
faster, allowing the camera to repeat the acquisition sooner
and thus collect more pictures. When considering the com-
parison with the work of Bimbo and Pernici [2] - Figure
5b) - it is worth noting that our approach is unable to im-
prove TDO results up to N = 6. This is explained by the
six element queue used to prioritize targets with the shortest
deadlines and the use of an exhaustive search to determine
the best solution for this subset. As compared to the algo-
rithm of Krahnstoever et al. [8], the improvements can be
explained by the assumption that the best target is the one
with the lowest transition cost. Even though this solution
can provide good approximations, it can be improved by
taking into account the positions of the remaining targets as
performed in our MRF-model.

5.2. Observation Rate

Additionally, we have also evaluated the average obser-
vation rate ( Θ

N ) with respect to the number N of targets in
the scene. The results presented in Figure 6 clearly evi-
dence an improvement in the number of successfully ob-
served targets as compared to the most competitive alter-
natives regarding the Γ performance. This difference can
be explained by the fact that the remaining approaches are
mainly concerned with the minimization of tour cost.

5.3. Run-time Analysis

Considering the real-time requirement of the camera
scheduling problem, we have estimated the average speed
of the proposed algorithm with respect to the number of tar-
gets in the scene. For this purpose, 100 simulations were
used to estimate the average running time for up to twenty
targets, as illustrated in Figure 7. Our approach is capable
of planning a sequence of sacades in less than 30 ms for up
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Figure 6. Comparative analysis of the average observation rate of
the proposed algorithm with the most competitive alternatives re-
garding the Γ performance.
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Figure 7. Average running time.

to 15 targets, which is residual when compared to the aver-
age time (600 ms) that the PTZ camera takes to move and
acquire a shot of a target. Moreover, it is worth noting that
for N = 15, the proposed algorithm is 108 times faster than
an exhaustive search.

6. Conclusions

In this paper, we were concerned about the time costs
of dynamic camera scheduling algorithms, which are pro-
hibitive for crowded scenes, i.e., with over 15 subjects in
the scene. Accordingly, we modelled the dynamic camera
scheduling problem using a MRF model. By denoting each
vertex as the position of a target in the sequence plan, our
approach can take into account temporal constraints (targets
deadlines) and transitions costs between consecutive ver-
tices. The energy minimization of the MRF model yields
- in real-time - a tour to acquire the maximum number of
different targets while minimizing the total travel time.

Additionally, a realistic virtual simulation was proposed
to assess the performance of camera scheduling algorithms.
The use of realistic human walk generator - trained from
real human paths - permitted to overcome dataset size con-
straints while maintaining the plausibility of human walks.



4 6 8 10 12 14
0

5

10

15

N

Γ
 (

s)

 

 

Random
FCFS
EDF
Our method

a)

2 4 6 8 10 12 14
0

2

4

6

8

10

N

Γ
 (

s)

 

 

Krahn et al.
TDO
Our method

b)
Figure 5. Comparative analysis of the consumed time (Γ) required to observe N persons in the scene. a) Our approach is compared with
common scheduling routines previously used in PTZ-based systems [4, 14, 3]. b) The comparison with the most competitive state-of-the-art
methods is presented separately for visualization purposes.

A comparative performance analysis with state-of-the-
art approaches evidences that the proposed model is able
to improve the observation rate while maintaining a com-
petitive tour time. As future work, we plan to evaluate the
effect of more sophisticated path prediction algorithms in
the performance of our model.
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